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Abstract: Despite the success of learning-based systems, recent studies have highlighted video
adversarial examples as a ubiquitous threat to state-of-the-art video classification systems. Video
adversarial attacks add subtle noise to the original example, resulting in a false classification result.
Thorough studies on how to generate video adversarial examples are essential to prevent potential
attacks. Despite much research on this, existing research works on the robustness of video adversarial
examples are still limited. To generate highly robust video adversarial examples, we propose
a video-augmentation-based adversarial attack (v3a), focusing on the video transformations to
reinforce the attack. Further, we investigate different transformations as parts of the loss function to
make the video adversarial examples more robust. The experiment results show that our proposed
method outperforms other adversarial attacks in terms of robustness. We hope that our study
encourages a deeper understanding of adversarial robustness in video classification systems with
video augmentation.

Keywords: video augmentation; adversarial example; video classification

1. Introduction

With the development of deep neural network technologies, deep-learning-based models
and algorithms have been applied to various scenarios, including some security- and safety-
critical conditions (e.g., autonomous driving, face authentication, and malicious application
detection). However, misclassification caused by the crashes of deep-learning models may lead
to systematic security risks such as traffic incidents and crimes against deep-learning-based
economic systems. Therefore, evaluating and improving the robustness of deep learning
models against potential security threats has become a focus of recent studies.

Over the past few years, a number of studies have shown evidence that existing
deep learning systems are susceptible to attacks using adversarial examples [1–4]. The
malicious users of smart systems construct minor, human-indiscernible perturbations and
apply them to benign inputs such as photographs and audio data. This leads to model
misclassifications, and the inputs that have been manipulated in this manner are referred to
as adversarial instances. As a result of the opaque nature of deep learning models and their
limited capacity for interpretation, adversarial assaults have emerged as a fundamental
challenge to their development.

To overcome the threat raised by adversarial examples, adversarial training is now recog-
nized as one of the most efficient defense methods against adversarial attack [5–7]. However,
the effectiveness of adversarial training is highly related to the similarity of training adversarial
examples and real-world adversarial examples. How to generate robust adversarial exam-
ples has a significant impact on the adversarial training effect. Currently, the majority of the
research on robust adversarial examples are in the image classification field [8–11] and the
speech recognition field [12–16], leaving the video classification field unexplored.

Generating video adversarial examples (Figure 1) is another vital field where robustness
is essential to the defense training methods [17]. However, it is much more difficult to generate
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robust adversarial examples for video than for image or audio. Compared with image and
audio data, video data consists of temporal and spatial information at the same time. To
generate robust video adversarial examples, there are still several challenges to be addressed:

(C1) A common method used to defend against video adversarial attacks is to add
small noises or distortions to the input examples. This is done because even minute
differences have the potential to corrupt the semantic information carried by adversarial
perturbations. Since adversarial perturbations are typically very small and difficult for
humans to detect, this defense method is effective. However, video adversarial examples
that are built using traditional methods have a very low level of robustness and, for the
most part, lose their adversarial properties when subjected to these defense methods.

(C2) Adding noise in the construction process can escape the defense (mentioned
in C1) and increase the robustness of adversarial examples to some extent. However, it
will increase the perturbation of video samples significantly, which weakens the human
imperceptibility of video adversarial examples.

(C3) The defense method of video adversarial examples can be improved by simply
changing the video processing strategy, thus bypassing the robustness enhancement method
(mentioned in C2).

To overcome the mentioned difficulties, we propose a video-augmentation-based
adversarial attack (v3a), which is able to generate robust video adversarial examples in
white-box or black-box scenes.

Original video

Learning-based video 
classification system

Adversarial video

input

Error label

noise

input

outputoutput

Original label
Figure 1. General process of video adversarial example attack.

Combined with the video augmentation processing, v3a improved the loss function
and thus generates more robust video adversarial examples which can escape the adversar-
ial defense (addressing C1).

Meanwhile, by performing once-transformation before generating and only transform-
ing the adversarial perturbations in each iteration, v3a can increase the robustness of video
adversarial examples without noticeable perturbations (addressing C2).

In addition, we investigate the influence of different transformations as parts of the
loss function to generate video adversarial examples (addressing C3).

Finally, experiments on the UCF-101 dataset demonstrate the robustness of the adver-
sarial examples generated by our method, which substantially improves the robustness of
existing methods.

2. Materials

Video adversarial attacks. Video is composed by superimposing multiple frames of
images, so initially, some scholars directly migrated the approach of image adversarial
attack to video [18–20]. However, considering the video has information in both time and
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space domains, it is necessary to construct video adversarial examples in a larger search
space, which makes video adversarial attacks more challenging. By selecting keyframes
of the video and perturbing them, Wei et al. [21] proposed the first sparse attack method
(SA) to improve the efficiency of video adversarial attacks. However, in SA, the keyframe
selection process is independent of the victim model and the input example, therefore,
the effect of the selected keyframes in SA is limited. To address this issue, Wei et al. [22]
proposed a difference-based heuristic approach to achieve effective keyframe selection. The
heuristic method measures the importance of a frame by comparing the difference in output
when inputting two sets of frames containing the particular frame or not. Later, Xu et al. [23]
used Grad-CAM to further improve the accuracy and efficiency of keyframe selection. In
addition to studying how to improve construction efficiency, some researchers [24–26] also
focus on how to perform black-box video adversarial attacks to improve their operability.
Patch Attack (V-BAD) is the first black-box video adversarial attack method to simplify the
black-box gradient estimation process [24]. Patch Attack attempts to reduce the dimensions
of search space for gradient estimation by treating each frame as a separate image and
estimating the overall gradient of the pixel points in a region. Later, Motion-Sampler Attack
further reduced the dimensions of search space by obtaining a motion-aware perturbation
prior to guiding the black-box gradient estimation, resulting in fewer queries [27]. However,
the fixed temporal structure of the search space is not flexible enough. Thus, Geo-Trap
Attack, instead of fixing the temporal structure of the search space, parameterizes the
temporal structure of gradients with geometric transformations [26].

However, to the best of our knowledge, none of these above-mentioned video ad-
versarial attack methods considers the robustness of the generated adversarial examples.
Our proposed method can be applied to all these current methods to achieve a trade-off
between efficiency, operability, and robustness.

Robustness of adversarial examples. Despite the initial success of adversarial attacks
toward different deep learning models. Existing adversarial attack methods that mainly focus
on the attack success rate are usually not robust due to the inevitable noise and biases in the
transmission process [28]. Thus, some recent studies explored the robustness enhancement
methods for adversarial attacks. Luo et al. [28] introduced the human perceptual system
as well as the noise tolerance evaluation principle into the image adversarial attack process.
By iteratively enhancing the noise tolerance of adversarial examples, the robustness of the
proposed method is significantly improved. Athalye et al. [29] further considered the robustness
of image adversarial examples under different transformations and achieved physical attacks
by generating transformation-robust adversarial examples. Eykholt et al. [30] introduced more
types of transformations that simulate the effects of the physical world on image adversarial
examples and achieved physical attacks with a higher success rate and smaller perturbation size.
However, these adversarial attack robustness enhancement methods are designed for image
adversarial examples. Thus, existing methods usually suffer from a large perturbation size
and poor imperceptibility given the property that video examples have higher dimensionality
compared with image examples.

In this work, we introduce the augmentation-based robustness enhancement method to
video adversarial attacks, and propose v3a, a video-augmentation-based adversarial attack.
Moreover, we significantly reduce the extra perturbations caused by iterate transformations.

3. Methodology

To overcome the limitations in the robustness and to address the above-mentioned
challenges of existing available video adversarial attack methods, in this section, we propose
the video-augmentation-based adversarial attack method, v3a.

3.1. Problem Formulation

Given the target video classification model F, the input examples can be represented as
x ∈ RN×C×H×W , where NCHW denote the index of frames, the number of color channels,
and the height and the width of each frame, respectively. y = F(x) represents the inference
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result of the video classification model F. When performing untargeted adversarial attacks,
the goal of the adversary is to generate an adversarial perturbation δ, which misleads the
victim model F into a wrong prediction (y 6= F(x + δ)). For targeted attacks, the goal of the
adversary is to generate an adversarial perturbation δ, which forces F to make the prediction
of the specified target label ŷ (ŷ = F(x + δ)). The robustness and the imperceptibility of
adversarial examples usually show a trade-off trend because larger perturbation sizes often
lead to better robustness but poorer imperceptibility. Generally, targeted attacks require
more attack iterations and larger perturbation sizes, thus targeted adversarial examples are
more robust.

Regarding the restrictions placed on the attack, we will assume that it is carried out
under both white-box and black-box conditions. In the white-box scenario, the adversary
is in possession of all of the information regarding the target model, which includes the
structure and parameters of the model, and is, therefore, able to directly compute the
gradient. On the other hand, when the condition is a black box, the adversary is only able to
estimate the gradient by referring to the output of the model. Black-box video adversarial
examples are said to have larger perturbation sizes compared to adversarial examples that
were generated under white-box conditions, as stated by existing video adversarial attack
methods [18–20].

3.2. Adversarial Video Attack

In this paper, we use the sparse adversarial video attack method (SA) [21] and the
heuristic black-box adversarial video attack method (HA) [22] as two baseline methods
of our proposed method, v3a. SA is the first sparse adversarial attack method for video
classification models which achieved key-frame selection under white-box constraints. By
selecting a constant number of frames and only adding adversarial perturbations on these
frames, SA accelerates video adversarial attacks and reduces the perturbation sizes. HA first
extended SA to black-box conditions with a zero-order gradient estimation algorithm. To
perform key-frame selections under black-box conditions, HA further proposes a heuristic
method that helps evaluate the importance of different frames. Following SA and HA, the
optimization process of untargeted attacks of v3a can be described as:

argmin
δ

α||M · δ||2,1 − βL(y, Fθ(x + M · δ)) (1)

where M ∈ {0, 1}N×C×H×W denotes the sparse mask which achieves sparse attack via
keyframe selection. For a specific frame in the input example x, the value of the correspond-
ing position of M is set to 1 and the other positions are set to 0. L(., .) is the adversarial loss
function that calculates the cross-entropy loss. Fθ denotes the victim model with parameters
θ. ||δ||2,1 calculates the L2,1 norm for the generated perturbation which serves to reduce
the perturbation size. (α, β) are the two weights of the different terms of the equation.

As for targeted attacks, the optimization process can be represented as follow:

argmin
δ

α||M · δ||2,1 + βL(ŷ, Fθ(x + M · δ)) (2)

where ŷ denotes the target label of the attack.
For white-box conditions, attackers use gradient-based optimization methods to solve

the above-defined optimization problems by directly computing the gradient. However,
the attacker cannot directly compute the gradients under black-box conditions, so HA
uses the zero-order algorithm for black-box gradient estimation. The estimated gradient is
defined as:

ĝ =
1
N

N

∑
n=1

F(x + δ + µφn)− F(x + δ)

µ
φn (3)
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where φn is sampled from the standard Gaussian distribution and N is the number of
samples. µ is a smoothing parameter, we set µ to 0.005 in the experiment. During each
iteration, the update of δ is given by

δ← δ− sĝ (4)

where s denotes the step size.
Meanwhile, HA assumes that the victim black-box model only provides the top-1

prediction label, thus there is no available information for the adversary to guide the
gradient descent process. So HA introduces the boundary attack algorithm [31], which
initializes the adversarial perturbation by randomly selecting a sample from the target
class and then iteratively reduces the perturbation size via gradient descent algorithms.
Therefore, the optimization goal is changed to minimize the perturbation size while keeping
adversarial properties. The optimization process of boundary attack can be formulated as:

d(x, x̂k) = d(x, x̂k−1 + ηk) + ε · d(x, x̂k−1) (5)

where d denotes the distance of the original video x and the corresponding adversarial
example x̂, k denotes the k-th iteration, η denotes the random direction extracted by a
binary search process, and ε denotes the smoothing parameter.

In this paper, we use SA and HA as two baseline methods that mainly focus on
the attack success rate but rarely consider the robustness of the generated adversarial
examples. Meanwhile, SA and HA can represent black-box attack methods. Additionally,
our proposed robustness enhancement method v3a is based on SA and HA. v3a can also
be applied to other existing video adversarial attack methods easily and enhances the
robustness of adversarial examples.

3.3. Video Augmentations Based Adversarial Attack

Adversarial examples may introduce noise or image transformations during delivery,
thus the robustness of the examples has a large influence on the success rate. At the
same time, smart system owners may introduce noise or transformations for security
considerations. Existing adversarial video attacks did not consider the potential noise and
variation, resulting in a low success rate and poor robustness. To address this challenge, We
propose the video-augmentation-based adversarial attack method v3a. By introducing noise
and video-augmentation-based transformations during the attack process, our method
significantly improves the robustness of adversarial examples while keeping an acceptable
perturbation size. Figure 2 gives an overview of v3a. Instead of applying adversarial
perturbations to the clean input video frames directly, v3a performs video-augmentation-
based transformations on the generated perturbations and the original frames.

Figure 2. Overview of the video-augmentation-based adversarial attack.

Specifically, we consider three factors that may affect the adversarial example: Gaus-
sian noise, video shape transformation, and video color transformation. Gaussian noise
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may be the most common transformation that may occur during the transmission pro-
cess of video data and is also easy to be introduced by security defenders. Video shape
transformations include random rotation, expansion, and contraction, and video color
transformations include random brightness and saturation adjustment. These factors are
also likely to occur during video transmission. They have little effect on the classification
of clean examples because they have little impact on the semantic information of the clean
examples. However, these transformations will lead to the failure of adversarial perturba-
tions with high probabilities. Figure 3 gives a visualization of three different types of video
augmentations introduced in our method. Given the input x and three transformations de-
noted by T1, T2, T3, respectively, the transformation function of our method can be defined
as follows:

T(x) = γ1T1(x) + γ2T2(x) + γ3T3(x) (6)

where T represents the transformation function, γ1, γ2, γ3 > 0 and γ1 + γ2 + γ3 = 1,
balancing three different transformations.

Figure 3. Visualization of different video augmentations introduced in v3a.

Meanwhile, we consider three different ways of adding transformations to the iterations:

• Before iterations. By performing once-transformation before the attack, the robustness
of adversarial examples can be improved to some degree. This method is fast but
limited because it does not consider the effect of the perturbation.

• During iterations. By performing transformation in each iteration, the robustness of
adversarial examples can be greatly enhanced. However, repeated transformations
can make attacks more difficult or even fail, as the original examples transform
multiple times. At the same time, the size of the perturbation will keep increasing
with iterations, which leads to weaker concealment.

• During iterations but only for perturbations. By performing once-transformation be-
fore the attack and transforming the adversarial perturbations in each iteration, the
robustness of adversarial examples is effectively improved and the difficulty of the attacks
does not increase significantly. This approach thus meets the comprehensive needs.

Therefore, the optimization goal of v3a can be described as follows:
For untargeted attacks,

argmin
δ

α||M · T(δ)||2,1 − βL(y, Fθ(T(x + M · δ))) (7)

where the start point of the algorithm is changed from the benign input video x to the
once-transformed video example T(x).

For targeted attacks,

argmin
δ

α||M · T(δ)||2,1 + βL(ŷ, Fθ(T(x + M · δ))) (8)

Meanwhile, our black-box gradient estimation is given by the following equation:

ĝ =
1
N

N

∑
n=1

F(T(T(x) + δ + µφn))− F(T(T(x) + δ))

µ
φn (9)

Algorithm 1 show the implementation of v3a.
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Algorithm 1: v3a: video-augmentation-based adversarial attack.

Input: target model F;
clean video x, clean label y;
transformation function T;
search distribution π(θ|z);
target class video x∗, target label ŷ //if targeted attack
Output: adversarial example x̂

1 if black-box then
2 δ← x∗ − x;
3 end
4 for i in max_iter do
5 if white-box then
6 g← ∇δwhite F(T(x) + T(δ));
7 end
8 if black-box then
9 g∗ ← ∇δblack D(T(x) + T(δ));

10 end
11 if white-box then
12 δ← δ + ηg;
13 end
14 if black-box then
15 δ← B(T(δ− η ĝ∗));
16 end
17 end
18 x̂ ← T(x + δ);
19 return x̂

4. Experimental Results
4.1. Experimental Methodology

Dataset. We evaluate the performance of our method v3a on the most widely used
video classification dataset, UCF-101 [32]. UCF-101 is a dataset containing 13,320 videos
including 101 action classes for action recognition. During the evaluation, we randomly
select one video from each class and sample 40 frames for each video as the input stream of
the target video classification model.

Target model. We use a long-term recurrent convolutional network (LRCN) [33] as the
victim model, for instance, SA [21]. The LRCN model consists of two parts: (1) a CNN part
for feature maps extracting from the original frames, and (2) a recurrent neural network
(RNN) part for prediction making.

Metrics. We evaluate our approach with two metrics: (1) Fooling rate (F). The percent-
age of success adversarial examples [34]. In this paper, the fooling rate is evaluated under
video transformations. We use the fooling rate to evaluate the ability of v3a that can bypass
video-augmentation-based transformations defense. (2) Mean absolute perturbation (MAP).
The mean absolute perturbation size of each pixel throughout the video. We use the mean
absolute perturbation to evaluate the impact of v3a on the perturbation sizes, which also
represents the human imperceptibility of different attack methods.

Attack settings. We consider both untargeted attacks and targeted attacks under
white-box conditions and black-box conditions. Note that we have three parameter weight
γ1γ2γ3 in transformation function. The parameters balance the effect of each transformation
on the perturbations. Thus, we determined the appropriate values for γ1γ2γ3 through a
grid search as (0.5, 0.25, 0.25), respectively.
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4.2. Performance Comparison

We compare our method to two other adversarial video attack methods: the sparse
adversarial video attack (SA) [21], and the heuristic black-box adversarial video attack
(HA) [22] for white-box conditions and black-box conditions, respectively. Both of these
methods are used to attack videos in a variety of environments. We examined the effective-
ness of three different approaches to attack while they were undergoing transformations.

4.2.1. Performance Comparison of White-Box Attacks

Table 1 shows the performance comparison of our method and SA under white-
box conditions. According to the results, when no transformation is performed on the
adversarial examples, both SA and v3a achieved a 100% success rate, which demonstrates
that v3a will not weaken the adversarial properties of adversarial examples under benign
conditions. When performing transformations on video adversarial examples, v3a achieves
a higher fool rate than SA, demonstrating that our method can effectively improve the
robustness of adversarial examples against potential transformations. For both targeted
and untargeted attacks, the fool rates of our method are 12% to 27% higher than SA
against three single transformations. By comparing the difference in success rates, it can
be found that Gaussian noise has the greatest effect on adversarial examples, and the
ensemble of transformations is more powerful compared to the individual transformations.
Adversarial examples of targeted attacks are more susceptible to transformations than
those of untargeted attacks. At the same time, the comparison of the MAP of the two
methods illustrates that our method does not significantly magnify the perturbations. By
only transforming the perturbations, our method has an acceptable impact on the quality
of adversarial examples.

4.2.2. Performance Comparison of Black-Box Attacks

For black-box attacks, the experimental results showed a similar tendency. When no
transformation is performed on the adversarial examples, both HA and v3a achieved a
100% success rate. When performing transformations on video adversarial examples, v3a
achieves a higher fool rate than HA. As shown in Table 2, by introducing the transformations
into the black-box gradient estimation process, our method improves the robustness of
black-box adversarial examples. On the UCF-101 dataset, our method improves the success
rate by more than 5% for all three individual and ensemble transformations. Meanwhile, it
can be observed that black-box adversarial examples are more robust than white-box ones
because the MAP is larger.

Table 1. White-box attacks against the LRCN model. The MAP of SA and our method are 0.0125 and
0.0133, respectively.

Transformations Method FR Untargeted FR Targeted

Benign SA 100% 100%
v3a 100% 100%

Gaussian Noise SA 72.28% 65.35%
v3a 97.03% 93.07%

Random Shape SA 81.19% 76.24%
v3a 95.05% 91.09%

Random Color SA 85.70% 80.20%
v3a 98.02% 96.40%

Assemble SA 57.14% 49.50%
v3a 89.11% 84.16%
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Table 2. Black-box attacks against the LRCN model. The MAP of HA and our method are 1.4528 and
1.4991, respectively.

Transformations Method FR Untargeted FR Targeted

Benign HA 100% 100%
v3a 100% 100%

Gaussian Noise HA 89.11% 84.16%
v3a 94.06% 90.10%

Random Shape HA 91.09% 88.12%
v3a 96.04% 94.06%

Random Color HA 87.13% 87.13%
v3a 98.02% 93.07%

Assemble HA 80.20% 75.25%
v3a 93.07% 87.13%

4.2.3. Impact on MAP

After that, we analyzed the differences in the effects that the various transformation
positions had on MAP. Using the UCF-101 dataset, we conduct untargeted attacks against
the LRCN model and then calculate the change in MAP that occurs as a result of the attack
process. As shown in Figure 4, the MAP and SA of our method remain stable as the number
of iterations increases, and they begin to gradually decrease after reaching a certain level of
increase. On the other hand, transforming both the perturbation and the original image
during the iteration results in a continuous increase of MAP, which is unacceptable for the
concealment of adversarial examples. The adversarial examples that are produced by using
the accumulative method all have significant perturbations, as can be seen in Figure 5.

Combining the above experimental results and theoretical analysis in Section 3, we
can have the following observations:

• The generation process of adversarial examples is the primary focus of existing meth-
ods for conducting video adversarial attacks; as a result, the robustness of video
adversarial examples has not been investigated. Because video data contain more
complex temporal and spatial structures than image data, even relatively minor trans-
formations carried out on the video frames can have a significant effect on the semantic
information of the adversarial perturbations. This renders previously developed methods
of attack less applicable to the real-world setting in which they are intended to be used.

• Performing transformation during the generation process of video adversarial exam-
ples is a practicable solution for enhancing the robustness of adversarial examples.
However, repeated transformations can make attacks more difficult or even fail. At
the same time, it will also lead to weaker concealment.

• The resilience of video adversarial instances was considerably improved by v3a thanks
to the once-transformation that was performed before the attack and the transforma-
tion of adversarial perturbations that was performed throughout each iteration. In
the meantime, v3a can be effectively integrated with other video adversarial attack
methods, which in turn increases the rate of successful attacks.
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Figure 4. The trend of MAP with iterations on UCF-101 toward the LRCN model.

Figure 5. Example of adversarial examples generated by SA, v3a, and the accumulative method,
respectively.

5. Discussion

Q: Gaussian noise, video shape transformation, and video color transformation are
the three distinct varieties of video alteration that are taken into consideration in version 3a.
Defenders, on the other hand, have the ability to develop one-of-a-kind transformations
that are inaccessible to attackers. Will the presence of unknown transforms reduce the
efficacy of v3a?

A: There may be many different algorithms behind the various video enhancements
and transformations. The influence of various transformations, however, may be simply
broken down into a rise or a reduction in the value of a given pixel when viewed from
the perspective of a single pixel. Because of this, v3a is capable of being transferred across
several transformations.

6. Conclusions

In this paper, we proposed an adversarial video attack method that is robust and based
on video augmentation. Our method generates adversarial examples that are resistant to
environmental transformations such as Gaussian noise, random shape variation, and ran-
dom color variation. Furthermore, the concealment of adversarial examples is guaranteed
by only performing transformations to perturbations, so our method effectively generates
examples that are resistant to environmental transformations. Experiments carried out on
the UCF-101 video dataset, which is widely utilized, have shown that our method achieves
a success rate that is 31.97% higher than that of the existing attack method when it comes
to carrying out white-box attacks. However, in comparison to the digital environment,
the noise and transitions that may be introduced by the transmission over the air may be
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quite different. As a result, the most important work that needs to be done in the future is
research into the effect that the physical environment has on video examples and applying
the method to real-world attacks.
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Notations and Definitions
All notations and definitions used in our paper:

x The original input video
δ The distortion to the original audio
F The target video classification model
y The classification result
ŷ The target label for targeted attack
α, β The parameters for controlling perturbations
M The key frame mask for sparse adversarial attack
L The loss function
θ The parameters of the target model
ĝ The estimated gradient
N The number of directions sampled in the gradient estimation process
µ The smoothing parameter for gradient estimation
φ The directions obtained by random sampling from a Gaussian distribution
s The step size for the perturbation update
d The distance evaluation function of the boundary attack
k The iteration count of the boundary attack
ε The smoothing parameter for the boundary attack
T The transform function, which performs three different transformations
γ1, γ2, γ3 The weights of three transformations
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