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ABSTRACT

Videos have a higher dimensionality compared with images,
making adversarial video attacks more challenging. We pro-
pose a gradient-based method for self-adaptive white-box
video keyframe selection and video adversarial example gen-
eration, taking advantage of that perturbations are transferable
between video frames. More specifically, a gradient-based
method is proposed to determine different video frames’ con-
tribution to classification results. Based on the weights of
different frames and the given boundary values, the proposed
method adaptively selects a subset of frames as keyframes for
perturbation. Experimental results of attacking two widely
used video classification models on UCF-101 and HMDB-51
datasets show that the proposed method effectively improves
the generation efficiency as well as the steganography of ad-
versarial video examples, leading to a reduction of more than
21% of the required number of iterations and more than 25%
of the average perturbation size for the untargeted attack.

Index Terms— adversarial attack, video recognition,
keyframe selection

1. INTRODUCTION

Deep neural networks are being used in more and more ar-
eas, such as autonomous driving, object detection, and natu-
ral language processing [1, 2, 3], and have outperformed tra-
ditional methods, while at the same time, the security risks
of deep neural-based models have received more widespread
attention. Deep neural networks are vulnerable to adversar-
ial example attacks, which mislead deep models by adding
human-invisible perturbations to clean examples [4, 5]. The
majority of current adversarial example studies focus on im-
age and audio domain [6, 7], but in recent years there are also
some studies in the video domain [8, 9].

Compared with adversarial image attack, adversarial
video attack is more challenging because videos have higher
dimensionality than images [10], thus adversarial video ex-
amples have to contain time-domain information that image
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examples do not have. Therefore, extending image attack
methods to attack video models directly will lead to low ef-
ficiency and poor invisibility. At the same time, due to the
nature of the video classification model, adversarial pertur-
bations are transmitted between frames. Therefore, adding
temporal-sparse perturbations to video examples is a way
worth considering to improve the efficiency.

This paper investigates how to measure the effects of
different frames on classification results. Different from
the definition of keyframes in the field of video processing,
keyframes in video classification are not only related to the
videos but also the target models. Therefore, the keyframe
selection method without introducing model information will
lead to low accuracy.

To address the above-stated challenges, we propose a new
self-adaptive white-box video keyframe selection method.
Firstly the backward propagation algorithm is used to gen-
erate a gradient heat map, and then the importance of each
frame is measured according to the mean value of the gradient
of the pixel points in the frame. The method then selects a
variable number of keyframes in descending order of impor-
tance until the sum of the weights of the selected keyframes
reaches a specified boundary value. This method introduces
model information into the keyframe selection process and
adjust the number of keyframes adaptively, which improves
the quality of keyframe selection and increases the efficiency
of keyframe selection by calling the target model only once.
Furthermore, we achieve a fast generation of adversarial
examples and subsequent reduction of perturbations by dy-
namically adjusting the terms of the L2,1 norm-based loss
function. Our major contributions can be summarized as
follows:

• We propose an efficient white-box adversarial video at-
tack model that selects keyframes using gradient back-
propagation.

• We divide the adversarial video attack process into two
stages to meet the constraints on query times and per-
turbation size in different cases

• Extensive experiments on two benchmark data sets
demonstrate that the proposed method is efficient and
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effective. It achieves a more than 21% reduction in
query numbers for the untargeted attack.

Fig. 1. Overview of the gradient-based keyframe selection
method.

2. RELATED WORK

Wei et al. [2] propose a sparse attack method (SA) to re-
duce the total perturbation size of the generated adversarial
examples. By adding perturbations to a subset of original
frames, the computational cost and the perturbation size of
adversarial video examples are reduced. However, in SA, the
information related to the model and the input examples is
not introduced in keyframe selection, thus the effect of se-
lected keyframes is insufficient. Then a heuristic keyframe
selection method is proposed to rank the importance of video
frames heuristically [11]. This method measures the impor-
tance of a frame by comparing the outputs of the target model
before and after deleting this particular frame. Different from
SA, the heuristic method links the keyframe selection process
with the features of input examples and target models, which
improves the accuracy of keyframe selection. However, the
direct deletion of frames triggers a large change, resulting in
low precision, and a new cost of querying the target model
is introduced. Therefore, this method is more suitable for
the black-box condition, which needs more queries to suc-
ceed than the white-box condition originally. A similar is-
sue arises in [12], which implements reinforcement learning-
based keyframe selection for black-box conditions, leaving
the adversarial keyframe selection method under white-box
constraints unexplored.

3. METHODOLOGY

In this section, we introduce the proposed gradient-based
sparse adversarial video attack method. We suppose that the
attack is carried out under white-box conditions (i.e., the at-
tacker has full knowledge about the target model and is able
to compute the gradient directly).

Denote the target video classification model asF , an clean
video examplex ∈ RN×C×H×W , whereNCHW denote the
number of frames, the number of channels, the frame height
and width, respectively. y = F (x) represents the classifica-
tion result for clean example. For untargeted attacks, the at-
tacker’s aim is to generate an adversarial perturbation δ such
that y 6= F (x + δ). As for targeted attacks, for a specified
target label ŷ, the attacker’s aim is to generate an adversarial
perturbation δ such that ŷ = F (x+ δ).

3.1. Sparse Adversarial Video Attack

Our attack algorithm is based on the sparse adversarial video
attack method (SA) [2], which is the first white-box adversar-
ial attack method for video classification models using L2,1

norm loss. Following the SA, We use the L2,1 norm loss
as a regular term to control the size of the perturbation and
use cross-entropy loss to achieve the generation of adversar-
ial examples. An untargeted attack can be represented by the
following equation:

argmin
δ

α||M · δ||2,1 − βL(y, Fθ(x+M · δ)) (1)

where M ∈ {0, 1}N×C×H×W denotes the keyframe mask
which achieves temporal sparcity. L(., .) calculates the cross-
entropy loss between the perturbed label and the clean label.
Fθ denotes the target model with parameters θ. ||δ||2,1 is the
L2,1 norm of δ, which serves to reduce the size of the pertur-
bations. And (α, β) are two weights to balance two terms.

As for targeted attack, the problem can be expressed as
follow:

argmin
δ

α||M · δ||2,1 + βL(ŷ, Fθ(x+M · δ)) (2)

where ŷ denotes the target label of the attack. Unlike SA
where (α, β) is set to constant, we set the value of (α, β) ac-
cording to the perturbed label instead. When the perturbed
label and the clean label are the same, we set (α, β) to (0, 1),
respectively, making the algorithm outputs the perturbations
to fool the target model. In the opposite case, we set (α, β) to
(1, 0) to make the algorithm reduce the size of the perturba-
tions.

3.2. Self-adaptive Gradient Based Keyframe Selection

Wei et al. [2] prove that adversarial perturbations are trans-
ferable in the time domain. Thus we consider selecting a sub-
set of frames that contribute most to the output of the target
model and only add perturbations on these selected frames
to achieve sparsity. Keyframes in video processing usually
refer to the frames that vary significantly from the preceding
frames. However, the frames that contribute most to the video
recognition process are different. Therefore, it is necessary to
find a method to measure the contribution of different frames
to the classification result.
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In the image field, Gradient-weighted Class Activation
Map (G-CAM) refers to the generation of a heat map of class
activation for an input image [13], is often used to measure the
contribution of different parts of the input to the output. For
an image input to a CNN model and classified into a specific
label, this technique helps understand which local position of
an original image contributes most to the final classification
decision. Inspired by this method, we propose a self-adaptive
gradient-based keyframe selection method. The method first
evaluates the contribution of each frame to the classification
result and then automatically selects keyframes based on the
importance of each frame.

For attacking LRCN model, denote the feature map ob-
tained after convolutional networks by s, we first calculate
the gradient of the score of output label y for the convolu-
tional layer output:

wyk =
∑
i

∑
j

∂y

∂skij
(3)

where wyk, k ∈ {0, 1, ..., N} denotes the importance weight
of the k-th frame, and skij denote the pixel point with coor-
dinates (i, j) on the k-th frame.

For attacking the C3D model, the feature map obtained
by 3D convolutional networks contains features of multiple
frames, so the weight of a certain frame should be identified
as the mean of the weights of all the feature maps containing
this certain frame. Suppose that the convolution window of
the convolution kernel in the time domain is z, wyk can be
obtained by the following equation:

wyk =
1

z

∑
z

∑
i

∑
j

∂y

∂szij
(4)

Then we select the keyframes in descending order of the
importance weight. Instead of selecting a constant number
of frames as keyframes, we automatically adjust the number
of keyframes until the sum of the weights of the selected
keyframes reaches the defined boundary value b ∈ (0, 1], in
this way, the number of keyframes is dynamically adjusted
according to the characteristics of the target model for a spe-
cific input example, avoiding the increase of perturbation
caused by too many keyframes or the decrease of efficiency
caused by too few keyframes.

4. EXPERIMENTS

4.1. Experimental Methodology

Dataset We evaluate our method on two widely used datasets,
UCF-101 [14] and HMDB-51 [15]. UCF-101 is a dataset con-
taining 13,320 videos distributed in 101 action classes for ac-
tion recognition. HMDB-51 contains a total of 7000 clips dis-
tributed in 51 action classes and is for human motion recog-
nition. During the evaluation, we sample 16 frames for each
video example as the original input of the target model.

Table 1. Test Accuracy(%) of the target models.
Model UCF-101 HMDB-51
C3D 85.88 59.57
LRCN 66.43 41.16

Model We use two video recognition models, Long-term Re-
current Convolutional Networks (LRCN) [16] and C3D [17]
as target models. LRCN models use CNNs to extract feature
maps from the original frames and then use Recurrent Neu-
ral Networks(RNNs) to make classification decisions. We use
Resnet [18] to encode the video frames and LSTM to achieve
classification in this experiment. C3D extracts the features
contained on the time and space domains simultaneously by
3D convolution networks. Table 1 summarizes the test accu-
racy of 16-frame snippets with these two models.
Metrics We evaluate our keyframe selection method using
four metrics.
Fooling Rate(F): the percentage of adversarial videos that
successfully make the target model output wrong labels [19].
Mean Queries(MQ): the mean value of queries needed to
successfully generate an adversarial example.
Mean Absolute Perturbation(MAP): the mean perturbation
of each pixel throughout the video.
Sparse Rate(SR): Percentage of perturbed frames to total
frames.
Attack Settings We consider both untargeted attack and tar-
geted attack. Note that we have one parameter boundary value
b ∈ (0, 1] in keyframe selection process. Larger b may in-
crease the number of keyframes selected, leading to fewer
query times but to a larger MAP, while smaller b may in-
crease the number of iterations required for a successful at-
tack. Thus we perform a grid search to determine the suitable
value of b is 0.3 for an untargeted attack and 0.4 for a tar-
geted attack. We randomly select one video example that can
be correctly classified by the target model from each class for
the experiment on both datasets. For the overall performance
comparison, we set the maximum number of iterations to 500
and 1000 for untargeted and targeted attacks. When compar-
ing the performance of the methods under the condition of
limited iterations, we set the maximum number of iterations
from 0 to 100 instead.

4.2. Performance Comparison

We compare our method with two keyframe selection meth-
ods, fixed keyframe selection method (SA) [2], and keyframe
selection method based on inter-frame differencing (IFD). We
evaluated the performances of three methods on two datasets
towards two video recognition models. Tabel 2 shows the
performance comparison of the three methods for both tar-
geted and untargeted attacks on the UCF-101 and HMDB-
51. For untargeted attacks, the experimental results show that
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Table 2. Untargeted and targeted attacks against C3D/LRCN Models. For all attack models, the Fooling Rate (FR) is 100%.

Dataset TargetModel Untargeted Targeted
Method MQ MAP SR Method MQ MAP SR

UCF-101

C3D
Ours 113.62 0.0992 82% Ours 328.54 0.2308 75%
SA 144.10 0.1379 75% SA 346.72 0.2783 69%
IFD 163.03 0.1388 75% IFD 390.96 0.2719 69%

LRCN
Ours 34.71 0.0573 80% Ours 85.73 0.1338 73%
SA 50.83 0.0854 75% SA 112.75 0.1762 69%
IFD 56.81 0.0830 75% IFD 126.58 0.1698 69%

HMDB-51

C3D
Ours 131.76 0.1031 80% Ours 171.35 0.2473 72%
SA 176.78 0.1399 75% SA 219.51 0.2784 69%
IFD 181.03 0.134 75% IFD 223.12 0.2774 69%

LRCN
Ours 27.52 0.0447 80% Ours 77.53 0.1032 74%
SA 43.67 0.0752 75% SA 107.84 0.1653 69%
IFD 49.41 0.0733 75% IFD 118.75 0.1601 69%

SA outperforms IFD, demonstrating that the distribution of
keyframes defined in video processing differs from that in
video recognition. Furthermore, for C3D and LRCN on both
datasets, compared to SA, our method achieved more than
21% and 26% reductions in queries and MAP, respectively,
which proves that our method effectively selects frames that
have a critical effect in the decision process of the target video
recognition model. By observing the intermediate processes
of the different methods, we found that in the early 80% it-
erations, the perturbation of our method increases faster than
the other two methods because the gradient is larger when
performing gradient descent on the keyframes we selected.
Thus, our method can achieve the attack on the target model
faster and maintain the adversarial nature in the subsequent
iterations while reducing the MAP.

For the targeted attack, the experimental results showed
a similar tendency. By introducing the gradient into the
keyframe selection process, our method improves the effi-
ciency and quality of adversarial example generation. On the
UCF-101 dataset, the query numbers can be reduced from
346 to 328 for the C3D model. For the LRCN model, the
query numbers have been reduced by more than 21% on both
datasets. It can be observed that the percentage of perfor-
mance improvement in targeted attacks is smaller than that
of untargeted attacks since targeted attacks often need more
iterations than untargeted attacks. During the process, the
distribution of keyframes has changed due to the update of
perturbations.

We then tested the trend of the fool rate of the two meth-
ods under the constraints of different maximum numbers of
iterations. We perform untargeted attacks towards the C3D
model on the HMDB-51 dataset and calculate the change in
fool rate when the maximum number of iterations is set from
0 to 100. As shown in 4.2, when limiting the maximum num-
ber of iterations to a smaller value, our method achieves a
higher fool rate than SA. When the maximum number of it-

erations is set to 10, the fool rate of SA is 0% but 5% for our
method, instead. When the maximum number of iterations is
set to 40, the difference of fool rate between the two meth-
ods is the greatest, reaching 27.5%. The experimental results
prove that our method can improve the success rate of the at-
tack when limiting the number of iterations to a small value.

Fig. 2. The trend of fool rate with the maximum number of
iterations on HMDB-51 towards c3D model.

5. CONCLUSION

In this paper, we proposed a sparse adversarial video at-
tack method with gradient-based keyframe selection. Our
method effectively selects the frames that contribute most to
the classification results in the video classification process,
and by adding perturbations to these frames, the generation
efficiency and concealment of the adversarial examples are
improved. The most relevant future work is studying the
distribution of keyframes over different video recognition
models and extending the method to the black-box condition.
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