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A B S T R A C T   

Blockchain technology brings innovation to various industries. Ethereum is currently the second 
blockchain platform by market capitalization, it’s also the largest smart contract blockchain 
platform. Smart contracts can simplify and accelerate the development of various applications, 
but they also bring some problems. For example, smart contracts are used to commit fraud, 
vulnerability contracts are deliberately developed to undermine fairness, and there are numerous 
duplicative contracts that waste performance with no actual purpose. In this paper, we propose a 
transaction-based classification and detection approach for Ethereum smart contract to address 
these issues. We collected over 10,000 smart contracts from Ethereum and focused on the data 
behavior generated by smart contracts and users. We identified four behavior patterns from the 
transactions by manual analysis, which can be used to distinguish the difference between 
different types of contracts. Then 14 basic features of a smart contract are constructed from these. 
To construct the experimental dataset, we propose a data slicing algorithm for slicing the 
collected smart contracts. After that, we use an LSTM network to train and test our datasets. The 
extensive experimental results show that our approach can distinguish different types of contracts 
and can be applied to anomaly detection and malicious contract identification with satisfactory 
precision, recall, and f1-score.   

1. Introduction 

Blockchain is a decentralized, distributed technology that is used to record the transactions (Li, Jiang, Chen, Luo, & Wen, 2020b). 
This brings the blockchain many benefits, such as decentralization, persistence, anonymity, and auditability (Zheng, Xie, Dai, Chen, & 
Wang, 2018). Therefore, blockchain technology has achieved rapid development in recent years, and application scenarios have also 
extended from the initial electronic virtual currency distribution transaction to finance, medicine, IoT, software engineering, and other 
fields (Li et al., 2020b). Bitcoin (Nakamoto, 2019) is the first successful application of blockchain technology. It was named the best 
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performing currency in 2015 (Desjardins, 2016) and the best performing commodity in 2016 (Ghosh, Gupta, Dua, & Kumar, 2020). 
Ethereum has a market capitalization of around 25 billion USD (as of June 2019), which is the second-largest blockchain platform after 
Bitcoin. At the same time, Ethereum is the first blockchain platform to support smart contracts, and also, it is the largest one (Chen 
et al., 2018a). As of June 2019, Ethereum had more than 67 million accounts, increasing approximately 70k new addresses per day, 
and there are millions of smart contracts in Ethereum (Wood et al., 2014). Many studies on security (Chen et al., 2017b; Li et al., 
2020b), performance (Chen, Li, Luo, & Zhang, 2017a), and application (Chen, Srivastava, Parizi, Aloqaily, & Al Ridhawi, 2020a; Li, 
Wu, Jiang, & Srikanthan, 2020a; Oham, Michelin, Jurdak, Kanhere, & Jha, 2020) of Ethereum have already achieved great progress. 
Moreover, many organizations and businesses have started using blockchain technology to enhance the functionality and security of 
their information systems, as well as to expand new business (Baniata, Anaqreh, & Kertesz, 2021; Berdik, Otoum, Schmidt, Porter, & 
Jararweh, 2012; Zhao, Chen, Liu, Baker, & Zhang, 2020). For example, organizations and businesses can use DApp (i.e. Decentralized 
Applications) to achieve these goals, which is implemented through smart contracts. However, DApp may also introduce new vul
nerabilities into the information system, as smart contracts themselves may have security issues. 

Necessity: The identification and classification of smart contracts can help us to better understand the behavior of smart contracts 
and figure out the vulnerability, such as confirm fraud contracts. However, low attention has been paid to these works. We believe that 
the classification and detection approach in this paper is important from the aspects of enhancing security, performance, and man
agement of blockchain-based information systems. The reasons are as follows:  

• First of all, smart contracts are one of the most important components of the blockchain. It is also the basis for many blockchain- 
based systems to implement their functions. Studying the security of smart contracts is a necessary way to improve the security of 
blockchain systems.  

• Classifying the contracts is the first step of malicious contract detection. Different contracts (eg., the detection of game contracts 
and finance contracts) have different behavior characters, thus the corresponding detection focus is different. The classify scheme 
and features extracted in this paper may provide a reference to studies of malicious smart contracts detection.  

• Classifying and examining the most common application cases can help those new smart contract developers in specific fields to 
understand which areas are worth more investment.  

• The deployer of a contract may conceal their true purpose, for example, some Ponzi contracts are masked by investment plan. The 
classification and detection approach in this paper can help users to verify the probability of a contract belonging to a certain type, 
thus contribute to discovering contracts with ambiguous purposes. 

• Some contracts are flawed in their design and may consume too much GAS, thus causing financial loss to users, which simulta
neously affects the performance of the blockchain. Our approach can help users to discover these contracts and thus avoid losses.  

• The detection of malicious smart contracts can mitigate the security problems in the blockchain. Our detection approach can be 
extended to anomaly detection, malicious contract detection, and unknown smart contract identification, which can contribute to 
alleviating the security issues caused by smart contracts. 

Contribution: In this paper, we focus on the research of data behavior generated by smart contracts and users in Ethereum, 
including the trend of Balance and the changes of Ether, transaction activities generated by users and smart contracts. In order to do 
this, we collected over 10,000 smart contracts from Ethereum and removed the contracts that contain too few transactions. Based on 
our analysis of these contracts, we find that the transaction behavior has independent characteristics between different types of 
contracts. For example, 1) Game-type contracts usually show the behavior of their Balance cliff-like reduction. That is because there is 
a winner in the game, and part of the Balance sends to the winner as a bonus. 2) In a Gambling-type contract, like coin flips, par
ticipants either win fixed-odds bonuses or lose all of their bets. So that the ether flow in and out shows a fixed ratio relationship. 3) In 
different types of contracts, the statistical features of transactions also can reflect their unique behavior. Some contracts have a large 
number of incoming transactions but have only a few numbers of outgoing transactions or even no outgoing transactions, such as a 
social contract. Other types of contracts may have a large gap between the number of external transactions and internal transactions. 4) 
Account activity can also reflect the behavior of different types of contracts. In a Ponzi contract, the sooner the account participates in 
the contract, the more times they are rewarded, which is significantly higher than those who participate later. This is consistent with 
the Ponzi scam phenomenon, in which the early participants benefit from the investments of later participants and it is less likely that 
the later participants will make a profit. In most cases, we can distinguish the types of contracts based on their single behavioral 
characteristics. However, sometimes we need multiple characteristics to determine the type of contract. For example, Gambling-type 
contracts may behave similarly to Game-type contracts. 

In summary, we make the following major contributions.  

(1) We collected more than 10,000 smart contracts from Ethereum and manually analyzed the behavior of their transactions. We 
finally find out four behavior patterns that can help us to have a better understanding of the contracts’ transaction behavior, and 
they could be used to distinguish different types of contracts.  

(2) To further research on this topic, we constructed 14 basic features to describe the transaction behavior. They are time-series 
data and constructed based on the major activities of a contract.  

(3) We propose a data slicing approach for slicing the collected smart contracts to solve the problem of insufficient datasets. Then 
we use them for training an LSTM network and the results show the effectiveness of our approach. 

The remaining of this paper is organized as follows. Section 2 introduces the background of the Ethereum, the account and smart 
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contract, and the transaction of the contract. We describe in detail data collection, transaction analysis methods, data processing, and 
model in Section 3. After that, Section 4 summarizes the experimental configuration, the evaluation metrics, and the experiment 
results. We review related studies in Section 5 and conclude the paper in Section 6. 

2. Background 

2.1. Ethereum 

Ethereum is an open-source blockchain platform proposed in 2014, which has now developed into the largest blockchain platform 
supporting smart contracts. It is also the blockchain platform with market capitalization second only to Bitcoin. As of this writing, the 
Ethereum blockchain has over 8 million blocks and each block in Ethereum contains many transactions (Team, 2017). Ethereum 
presented its dedicated cryptocurrency named Ether (referred to as “ETH”). Like other digital currencies, ETH can be traded on 
cryptocurrency exchanges, or developers pay ETH to keep their applications running, including transaction fees and computational 
services (Chen et al., 2018a). Compared with Bitcoin, another feature of Ethereum is the introduction of the Ethereum virtual machine 
(referred to as “EVM”). The EVM is the runtime environment for smart contracts (Solidity, 2019). Developers usually build smart 
contracts in a high-level language (e.g., Solidity (2019)) and then convert them to bytecode, which can be executed in EVM. 

2.2. Account and smart contract 

The account is the basic unit in Ethereum. Each account has a unique address with a length of 20 bytes. The state transitions in the 
Ethereum blockchain is the transfer of information and value between accounts (Buterin et al., 2014). There are two types of accounts: 
externally owned account (EOA) and contract account (CA). The main difference is that the CA contains executable code, while the 
EOA does not. 

For the EOA, users can create an externally owned account at will and control it with a private key. To generate the address of the 
EOA, the public key is first generated by calculating the hash of the private key, and then the last 160 bits of the public key is used to 
form the EOA address (usually expressed as a 40-bit hexadecimal string, that is, 20 bytes in length). The address is the unique identifier 
of the externally owned account. Though EOA does not have executable code, it can be used to store current ether balances or to 
transfer Ether, deploy contracts, and call smart contracts by sending transactions. 

The contract account, or called the smart contract, was first introduced in 1997 (Szabo, 1997), and now is a special account on 
Ethereum, controlled by the smart contract code. Like EOA, a smart contract also has a current ether balance field and a unique 
address, but its address is determined by the contract creator’s address and the transaction that occurred at that time when the contract 
was created. In Ethereum, the smart contract is essentially an execution program composed of bytecode, which can be executed 
automatically when the trigger condition is met. Moreover, once the smart contract is deployed on Ethereum, even the developers 
themselves cannot modify it. Developers usually use high-level language for source code development, convert it into bytecode 
through the EVM compiler, and then upload the compiled bytecode to Ethereum through the client. After the smart contract is 
deployed in Ethereum, it is called and run in the EVM in the form of bytecode. In addition, the contract also has a database-like space 
called storage for storing persistent information (e.g., global variables, the bytecode for smart contracts) (Wood et al., 2014). 

Smart contracts deployed in Ethereum cannot be actively executed. They need to be triggered by transaction or message invocation 
and will be run by EVM on every node participating in the network for verifying new blocks. Therefore, smart contracts are either 
called by externally owned accounts or by other smart contracts, but their specific calling methods are different. Although smart 
contracts cannot be modified after deployment, Ethereum allows contracts to be self-destructed, which can be used to stop buggy 
contracts, etc. When the contract self-destructs, its runtime bytecode will be removed from the blockchain, and the remaining Ether in 
the contract will be sent to the specified account (Wood et al., 2014). In general, smart contracts can be easily deployed in Ethereum. It 
can be said that the smart contract is a collection of function codes and data states stored in a specific address in the Ethereum 
blockchain (Solidity, 2019). 

Fig. 1. The external transaction and internal transaction.  
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2.3. Transaction 

The blockchain is a globally shared transactional database (Solidity, 2019). A block contains many transactions, and a transaction is 
a message sending to the blockchain, which carries import information (e.g., the function parameter, or a contract’s bytecode, etc.). 
Anyone can synchronize data on the blockchain by participating in the network. However, if someone wants to change something in 
the blockchain, they must create a transaction that must be accepted by all the other participants. Also, when a transaction is applied in 
the blockchain, no other transaction can change it (Solidity, 2019). 

In Ethereum, a transaction is a message sent from one account address to another. We focus on the transaction because Ethereum’s 
primary activities are triggered by transactions, including Ether transfers, invoking smart contracts, and creating contracts. To avoid 
ambiguity, we refer to the transaction that from the EOA as an external transaction (Chen et al., 2019b), while the transaction sends 
from the smart contract to other accounts as the internal transaction. Fig. 1 shows the external transaction and internal transaction. 
Note that the internal transactions are not kept in the blockchain, so they cannot get directly through the parsing blocks (Chen et al., 
2019b). 

Each transaction contains some basic fields, where the txdata field contains the main transaction information, including: the 
Recipient field specifies a recipient address of a transaction; the Signature field specifies the signature of the transaction sender; The 
Amount field indicates the number of Ethers transferred, and the unit is Wei; the Payload field specifies the bytecode of the smart 
contract or the parameter when invoking the contract. Transaction delivery may also fail, such as insufficient transfer balance, 
insufficient GAS, invalid bytecode, and so on (Chen et al., 2018a). The effect of the applied transaction will be rolled back when it fails. 
Therefore, we analyze smart contracts only based on those successful transactions (Chen et al., 2018a). Creating a smart contract 
means deploying the contract on the blockchain, the creator of which can be EOA or another smart contract, and sending the 
transaction to realize the deployment. In this case, the Recipient field address should be empty, and the Payload field contains the 
bytecode of the contract. After successful deployment, any Ethereum user can invoke the contract by sending a transaction to the 
contract’s address. 

3. Data, analysis and model 

This section outlines data collection, transaction analysis methods, data processing, and model. First, the source and collection 
method of smart contract data are briefly introduced. Then, the transaction characteristics of the contract are analyzed to find out the 
behavior characteristics that can reflect the smart contract. Finally, the data processing method and model are explained. 

3.1. Data collection 

We collect the contract data in two ways. One is to synchronize all historical transaction data through the Ethereum client. We use 
the Parity client and set it to tracing-on mode so that it can compute and store tracing data. All transaction data from Jul-30-2015 to 
Feb-1-2018 (about 5 million block height) were collected as the research object. The other is to use the APIs provided by Etherscan 
(Team, 2017) to download the transactions of a smart contract and store the data in JSON format. Although the provided API claims 
that it can only download the last 10,000 transactions, it is possible to obtain all transactions of a contract by modifying the block 
range. Due to network laggy, contract transactions after Feb-1-2018 are collected by the second method. According to the different 
applications of smart contracts, we also refer to the DApp publishing website (Dap, 2019; 2020; 2020; Sta, 2020) and finally sort out 
the six most common types in Ethereum. We collected a total of 11,593 contracts, and the detail is in Table 1. 

3.2. Transactions-based analysis 

Every transaction of a smart contract, since its creation, was kept on Ethereum. Therefore, we can restore various state changes and 
trends of smart contracts. For example, Fig. 2 shows a contract1 on Ethereum called Wrapped Ether. We could restore all the trans
actions since its creation, including the external and the internal transactions. Also, we could distinguish the incoming transactions and 
outgoing transactions, which are invoked by EOAs or contracts. 

Different types of contracts have different transaction behavior. The application purpose of a contract determines its specific 
behavior, which in turn helps us identify the type of the contract. Similarly, malicious contracts (e.g., Ponzi contracts) also have their 
own special behavior and can be detected. We manually investigated several contracts with different application purposes and 
summarized the behavior patterns from transactions which can reflect the differences between them. 

3.2.1. Changes in balance 
Balance refers to how much Ether is in an account at the time. The account includes EOAs and contracts, but we only consider the 

Balance of the contract here. Changes in Balance can reflect differences in different types of contracts. A game contract2 usually has the 
behavior shows in Fig. 3. 

With the addition of game participants, the contract’s Balance grows steadily in a while. However, after a period of time, Ether will 

1 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2  
2 0x7fDcD2a1E52F10C28cB7732f46393e297eCaDDa1 
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have a “cliff” type of outflow, which is drastically reduced to a certain amount of Balance (and possibly reduced to zero), and this 
phenomenon will occur periodically. We found that this is because as the game progresses, the “winner” appears in the game, and the 
contract sends the Balance to the winner as a bonus. This is not or rarely the case in other types of contracts. 

3.2.2. Correlation between inflow ether and outflow ether 
There is a fixed correlation between the inflow and outflow of Ether in some contracts, and this correlation can reflect the inde

pendent transaction characteristics of this type of contract, such as the gambling contract. The Gambling contract on Ethereum can be 
roughly divided into several forms: lottery tickets, slot machines, coin flips, dice, etc. They all have a feature that the contract itself 
charges a gambling participant a certain percentage of commission. This means that in a gambling contract, there is a fixed ratio 
between the Ether bet and the Ether gained when participants win a bet. For example, a gambling player makes a coin-flip bet, the bet 
is X Ether, the winner will receive A times the bet bonus (assuming no extra fees), and the commission rate of the contract is B%, then if 
the participant wins this bet, he will actually earn Y bonus. Hence, all players who win a bet bonus in this contract will have this 
feature: Y = X ∗ A − X ∗ B%. Fig. 4 shows a gambling contract3, the red line represents the relationship between the bet and the result, 
and presents a linear relationship, indicating that the ratio between them is fixed. 

3.2.3. The statistical features of transactions 
In different types of contracts, their transactions also have some unique statistical features. For example, in some social contracts, 

Table 1 
The number of each type of contracts.  

Types Gambling Game Finance Exchange High-risk Social Total 

Count 3056 2830 3997 682 790 238 11,593  

Fig. 2. The transactions of a contract on Ethereum since its creation.  

Fig. 3. A game contracts Balance trend and Ether trend.  

3 0x777777c3b5dDE20E09Fe40B37622AE2Cd3b055b7 
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the primary behavior of users is to register accounts and publish information. So, there will be only incoming transactions and no 
outgoing transactions, and users do not need to transfer Ether when they register or post information. They only need to pay for 
transaction gas, so the contract balance is always 0, as an example4 in Fig. 5. For some other types of contracts, the number of incoming 
transactions may be significantly higher than the number of outgoing transactions. There may also be a large gap between the number 
of external transactions and the number of internal transactions. Take a game contract5 as an example, shows in Fig. 6, this phe
nomenon is common in a game and gambling contract. 

3.2.4. Features of account activity 
The activities of the accounts in a contract can also reflect the unique characteristics of the contract. For example, Figs. 7 and 8 are 

the distribution of accounts activities of a Ponzi contract6 and a gambling contract7, respectively. 
Fig. 7 shows the frequency of investments and the amount of investment Ether of a Ponzi contract. The two sub-figures above 

represent the frequency of account investment (shown in red) and the frequency of investment return (shown in blue). The two sub- 
figures below represent the amount of Ether invested (shown in red) and the amount of Ether returned (shown in blue). In every sub- 
figure, each small square represents the statistics in one day. And we use the color depth to distinguish between them, the darker the 
color, the greater the number, and vice versa. From the top left to bottom right corner indicates the chronological order in the contract, 
i.e. the square in the top left corner represents the first day and the bottom right corner represents the last day. The following features 
can be observed. First, as can be seen from the two sub-figures above, the small squares in the red sub-figure are very light in color, but 
the corresponding blue sub-figure are very dark in color, especially the first one is the most obvious. This shows that the earlier the 
account invested in the contract, the higher the frequency of returns, which is significantly higher than those who participated in the 
contract later. Second, from the two sub-figures below, most of the small squares in the front have color in the red sub-figure and the 
blue sub-figure. The small squares in the back are colored in the red sub-figure, while the corresponding small squares in the blue sub- 
picture almost have no color. This indicates that the early investment accounts have a higher proportion of return, while the late 
investment accounts have almost no investment income. Both of the points are consistent with the Ponzi scam phenomenon. 

In other types of contracts, for example, Fig. 8 is a gambling contract. First of all, from the two sub-figures above, most of the small 
squares in the red sub-figure have roughly the same shades of color as the small squares in the blue sub-picture. However, there are also 
cases where the red sub-figure has darker small squares and the corresponding blue sub-figure has lighter small squares. This shows 
that the frequency of user investment and return is basically proportional, i.e., the probability of getting a return is higher if you bet 
more often. Of course, it is also possible to bet and keep losing without any return. This is pretty much the same as in real gambling. 
Secondly, the two sub-figures above also show another phenomenon that is consistent with real gambling. The number of bets placed is 
far greater than the number of winnings from an overall perspective. Thirdly, from the two sub-figures below, the small squares in the 

Fig. 4. Correlation between inflow Ether and outflow Ether of a gambling contract.  

4 0x5d4ABC77B8405aD177d8ac6682D584ecbFd46CEc  
5 0x91b9d2835ad914bc1dcfe09bd1816febd04fd689  
6 0xe82719202e5965Cf5D9B6673B7503a3b92DE20be  
7 0x777777d1123591df7f68e053bc182de3cd4fa6de 
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blue sub-figure corresponding to the red sub-figure are either slightly darker or absent. This suggests the Ether betted by the account 
either receives a fixed return or has no income, which is consistent with the characteristic of gambling. 

3.2.5. Transactions-based features 
According to the four behavior patterns of smart contracts we found, it is clear that transaction-based analysis can indeed reflect the 

characteristics of different application types of contracts. However, a single feature cannot completely judge the category of a contract 
accurately, so it is necessary to combine multiple behavioral features to improve the accuracy of the judgment. 

Through statistical analysis of a large number of smart contract transactions on Ethereum, we constructed the following 14 basic 

Fig. 5. The transactions’ statistical feature of a social contract.  

Fig. 6. The transactions’ statistical feature of a game contract.  
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features that can truly reflect smart contracts. These 14 features are constructed in the chronological order in which contract trans
actions occur, so they are time-series data. These features are as follows.  

Feature 1: The number of a contract’s Balance;  
Feature 2: The number of inflow Ether from an external transaction;  
Feature 3: The number of inflow Ether from an internal transaction;  
Feature 4: The number of outflow Ether from an external transaction;  
Feature 5: The number of outflow Ether from an internal transaction;  
Feature 6: The number of a contract’s total transactions;  
Feature 7: The number of incoming transactions of external transactions; 

Fig. 7. The account activity features of a Ponzi contract.  

Fig. 8. The account activity features of a gambling contract.  
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Feature 8: The number of outgoing transactions of external transactions;  
Feature 9: The number of incoming transactions of internal transactions;  

Feature 10: The number of outgoing transactions of internal transactions;  
Feature 11: The number of unique incoming addresses of external transactions;  
Feature 12: The number of unique outgoing addresses of external transactions;  
Feature 13: The number of unique incoming addresses of internal transactions;  
Feature 14: The number of unique outgoing addresses of internal transactions. 

3.3. Data preprocessing and model 

3.3.1. Data preprocessing 
Based on these 14 features, we can distinguish between two different types of contracts. We take the 14 features of a contract as 

time-series data. Therefore, each contract can actually be regarded as a two-dimensional matrix. Each row is used to represent the 14 
features mentioned above, i.e. there are 14 rows in total. Each column represents each time interval. 

Because the creation time of each contract is different, the number, time, frequency of the generated transactions are different, that 
is, the number of columns of each matrix is different. The transactions of each contract need to be sliced. The method and length of the 
slice will affect the accuracy and efficiency of model classification. It is worth noting that some contracts generate too little data and 
only have a few transactions. We believe this kind of data cannot truly represent the behavior characteristics of a contract. Therefore, 
we will ignore such contracts in subsequent experiments. 

Fig. 9 shows the flow of data preprocessing and Algorithm 1 describes the data slicing algorithm. The process of the data slicing 
algorithm can be summarized as the following: 1) Set a timestep according to a fixed time T. Then, the data generated in a timestep is 
merged into one. A contract can be represented by a two-dimensional array (n,14) with a size of n ∗ 14, where n indicates that there are 
n timesteps, which is also the length of the array, 14 means that each n has 14 data, i.e. 14 feature data on this timestep. 2) Set a 
minimum data length nMin and a maximum data length nMax. A contract with data length n less than nMin will be ignored and will not 
participate in subsequent experiments. 3) For the case of nMin <= n <= nMax, padding the insufficient data with 0, and the array size 

Fig. 9. The flowchart of data preprocessing.  
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Input: contractdata:D, fixedtime: T, minimumdatalength:nMin, maximumdatalength:nMax, timestepsinterval: m
Output: thepreprocesseddata:(x, nMax, 14)

1: MergeD at thefixedtime T.← Generatea new D′ with a lengthof n.
2: TheD′ canberepresentedby a two-dimensionalarray(n, 14)← n indicatesthattherearen timesteps.
3: if n < nMin then
4: Thecontractwith datalengthn lessthannMin will beignoredandwill not participatein subsequentexperiments.
5: return
6: elseif nMin ≤ n ≤ nMax then
7: Paddingtheinsufficientdatawith 0, andthearraysizebecomes(nMax, 14).
8: return (1, nMax, 14)← Generatea three-dimensionalarray, 1 meansthecontracthasonly onedataslice.
9: elseif n > nMax then

10: while Every m timestepsinterval do
11: GetA sliceof dataof lengthxMax.← Eachsliceis a two-dimensionalarray(nMax, 14).
12: if theremainingn ≥ nMin then
13: continue.← thedatalengthlessthannMax is still paddingwith 0
14: else
15: return (x, nMax, 14)← Generatea three-dimensionalarray, x representsthecontracthasa total of x dataslices.
16: end if
17: end while
18: end if

Algorithm 1. Algorithm for Data Slicing.  
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becomes (nMax,14). Generate a three-dimensional array (1, nMax, 14), 1 means the contract has only one data slice. 4) For the case of n 
> nMax. From the beginning of the data, obtain a slice of data (nMax,14) at every m timesteps interval, until the remaining n is less 
than nMin (the data length less than nMax is still padding with 0). Therefore, one contract can generate multiple (nMax,14) at this 
time. This has the advantage of increasing the amount of data in the experiment. Converting all the slices into an array can form a 
three-dimensional array (x, nMax,14), where x represents a total of x data slices. The above data slicing algorithm can complete the 
preprocessing of the data. The specific value of T, nMin, nMax, and m in the algorithm will be mentioned in Section 4. 

3.3.2. Model structure and training parameters 
We process the smart contract into many time series slices, each of which is part of a contract data and can be regarded as a mapping 

of the characteristic behavior of a contract. Fig. 10 shows the flow of dataset generation and model training. First, take each type of 
contract as input data separately and each contract in the type is processed by the data slicing algorithm (as mentioned in Section 
3.3.1). Then, the (x, nMax, 14) generated from all the contracts is finally combined into one (X,nMax,14). Repeat the above process 
until all types have been processed. Finally, we can obtain the dataset ((X, nMax,14), label) containing type labels for training models 
and experiments. After that, each type in the ((X, nMax,14), label) dataset is divided into a training dataset and a test dataset at a ratio 
of 7:3, and set aside 20% from the training dataset as the validation dataset. Note that the data should be randomly taken during 
division to prevent overfitting. The training dataset is used to train the model, the validation dataset is used to tune and optimize the 
model parameters during training, and the test dataset is used to test the effectiveness of the model. 

We use the LSTM (Hochreiter & Schmidhuber, 1997) network to train our dataset and conduct the experiments. The specific 
training parameters are set as follows (based on Keras and TensorFlow): dropout = 0.2 and recurrent dropout = 0.2, these two pa
rameters are used to mitigate overfitting; the loss function uses binary crossentropy and the optimizer uses Adam; the Dense layer sets 
the activation = ‘sigmoid’ for outputting the result. Other parameters are given in each set of experiments in Section 4, including T,
nMin, nMax, m,batch size, epochs. 

4. Experimental and results analysis 

4.1. Evaluation metrics 

We use the Precision(P), Recall(R), and F1 − score(F1) to evaluate the performance of our models. TP (true positive) refers to the 
number of correct predictions for smart contracts. FP (false positive) refers to the number of misclassifications of other types to this 
type. And FN (false negative) refers to the number of misclassifications of this type to other types. The higher the value of precision,

Fig. 10. The flowchart of dataset generation and model training.  
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recall, and F1, the better to distinguish the different types of smart contracts. 

Precision(P) =
TP

TP + FP  

Recall(R) =
TP

TP + FN  

F1 − score(F1) = 2 ×
P × R
P + R  

4.2. Experiment 1: evaluation of differences between different types of contracts 

In order to verify our analysis conclusions on different types of smart contracts in Section 3, we performed pairwise classification 
experiments on different types of contracts. Specifically, the experimental parameters are set as follows: T = 24(hours), nMin = 64,
nMax = 128, m = 10, batch size = 64, epochs = 2000. T refers to timesteps, nMin means a minimum data length and nMax a 

maximum data length, m stands for m timesteps. These four parameters are mentioned in Section 3.3. And batch size is the batch size 
when training the LSTM network. The number of epochs is a hyperparameter that defines the number of times that the learning al
gorithm will work through the entire training dataset. Each group of experiments was repeated ten times. The results of the mean (m) 
and standard deviation (std) are summarized in the form of m (+/- std) in Tables 2–7. 

Tables 2 –7 respectively showed the difference between one type and other different types of contracts, which illustrated that the 
features we extract from the contract transaction can characterize the behavior patterns of different types of contracts. Taking Table 2 
as an example, the Precision of Game-type contracts relative to other types of contracts is between 0.902–0.955, which means that 
more than 90% of Game-type contracts can be distinguished from other types by the features. The Recall ranged between 0.909 and 
0.967, meaning that more than 90% of Game-type contracts were correctly identified as Game-type. The F1-score is between 
0.906–0.972, indicating that the classification effect of our model is well. We use all these 14 features to perform our experiment and 
the results show that they can truly reflect the characteristics of different types of contracts. But we also found that if some contracts 
have too few transactions, it will affect the accuracy of the experimental results. This approach can be extended to anomaly detection, 
malicious contract detection, and unknown smart contract identification. 

4.3. Experiment 2: applied to anomaly detection 

In practical applications, the issuer of the contract may conceal the true purpose of the contract, such as some contracts that claim 
to be an investment plan but turn out to be typical ponzi scams. Another example is that some gambling contracts actually have a much 
lower win rate than they claim. This experiment can be used to verify the possibility that a contract belongs to a certain type, and thus 
to detect contracts with unclear purposes. We set one type of contract to be a positive dataset, and all the remaining contracts to be 
negative dataset. We performed six groups of experiments, and each group of experiments was repeated ten times. The results of the 
mean (m) and standard deviation (std) are summarized in the form of m (+/- std) in Table 8. Specifically, the experimental parameters 
are set as follows: T = 24(hours), nMin = 64, nMax = 128, m = 10, batch size = 64, epochs = 5000. 

From Table 8, it can be seen that Precision ranges from 0.827 to 0.965, i.e., the detection results are 82.7%-96.5% correct, with the 
highest being the High-risk-type and the lowest being the Game-type. For example, in the test results of the Game-type, 82.7% of the 
contracts are of the Game-type, and the remaining 17.3% are misidentified as the Game-type. The Recall is between 0.696 and 0.876, 
which means that a contract’s type is correctly identified ranged from 69.6% to 87.6%, with the highest being High-risk-type and the 
lowest being Social-type. For example, in the Game-type samples, 83.8% of Game-type contracts are correctly identified, and the 
remaining 16.2% of Game-type contracts are identified as other types of contracts. The F1-score is between 0.776 and 0.918. Compared 
with Experiment A, the overall P, R, and F1-score has decreased, which is caused by the imbalance of the datasets. But this does not 
hinder the effectiveness of this method for detecting the contract with an unclear purpose. 

4.4. Experiment 3: malicious contract identification 

Our method can also be used to detect malicious contracts, such as Ponzi contracts. We use the Ponzi contract data from Paper 

Table 2 
The results of Game type contracts and other types of contracts.   

Game  

Precision Recall F1-score 

Gambling 0.939 (+/-0.004) 0.967 (+/-0.003) 0.953 (+/-0.002) 
Exchange 0.902 (+/-0.003) 0.909 (+/-0.005) 0.906 (+/-0.003) 
Finance 0.934 (+/-0.003) 0.956 (+/-0.002) 0.945 (+/-0.002) 
High-risk 0.967 (+/-0.002) 0.977 (+/-0.001) 0.972 (+/-0.001) 
Social 0.955 (+/-0.001) 0.964 (+/-0.003) 0.959 (+/-0.001)  
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(Chen, Zheng, Ngai, Zheng, & Zhou, 2019d) as a malicious contract dataset for our experiments. However, the dataset of Ponzi 
contracts is too small for training an LSTM network. Even our data slicing algorithm is used, it is still too small compared to other 
contracts. Therefore, we increase the training data by reducing nMin, due to the decrease of nMin, each data slice may not truly 
represent the characteristics of the contract behavior. We set Ponzi dataset to be a positive dataset and another type of contract to be a 
negative dataset. We performed six groups of experiments, and each group of experiments was repeated ten times. The results of the 

Table 3 
The results of Gambling type contracts and other types of contracts.   

Gambling  

Precision Recall F1-score 

Game 0.922 (+/-0.010) 0.816 (+/-0.015) 0.866 (+/-0.009) 
Exchange 0.935 (+/-0.007) 0.866 (+/-0.014) 0.899 (+/-0.007) 
Finance 0.945 (+/-0.005) 0.914 (+/-0.008) 0.929 (+/-0.005) 
High-risk 0.950 (+/-0.007) 0.946 (+/-0.006) 0.948 (+/-0.005) 
Social 0.950 (+/-0.005) 0.933 (+/-0.009) 0.941 (+/-0.006)  

Table 4 
The results of Exchange type contracts and other types of contracts.   

Exchange  

Precision Recall F1-score 

Game 0.910 (+/-0.005) 0.903 (+/-0.003) 0.907 (+/-0.003) 
Gambling 0.950 (+/-0.004) 0.969 (+/-0.002) 0.959 (+/-0.002) 
Finance 0.952 (+/-0.002) 0.967 (+/-0.002) 0.959 (+/-0.002) 
High-risk 0.969 (+/-0.002) 0.976 (+/-0.001) 0.973 (+/-0.001) 
Social 0.961 (+/-0.003) 0.974 (+/-0.001) 0.967 (+/-0.001)  

Table 5 
The results of Finance type contracts and other types of contracts.   

Finance  

Precision Recall F1-score 

Game 0.891 (+/-0.006) 0.816 (+/-0.012) 0.852 (+/-0.007) 
Gambling 0.918 (+/-0.007) 0.947 (+/-0.005) 0.932 (+/-0.005) 
Exchange 0.922 (+/-0.009) 0.861 (+/-0.010) 0.890 (+/-0.008) 
High-risk 0.953 (+/-0.004) 0.965 (+/-0.003) 0.959 (+/-0.002) 
Social 0.916 (+/-0.010) 0.923 (+/-0.013) 0.920 (+/-0.008)  

Table 6 
The results of High-Risk type contracts and other types of contracts.   

High-Risk  

Precision Recall F1-score 

Game 0.955 (+/-0.006) 0.872 (+/-0.018) 0.912 (+/-0.009) 
Gambling 0.916 (+/-0.011) 0.924 (+/-0.014) 0.920 (+/-0.010) 
Exchange 0.955 (+/-0.007) 0.910 (+/-0.012) 0.932 (+/-0.008) 
Finance 0.951 (+/-0.006) 0.930 (+/-0.008) 0.941 (+/-0.004) 
Social 0.954 (+/-0.009) 0.955 (+/-0.011) 0.954 (+/-0.007)  

Table 7 
The results of Social type contracts and other types of contracts.   

Social  

Precision Recall F1-score 

Game 0.875 (+/-0.015) 0.827 (+/-0.010) 0.850 (+/-0.005) 
Gambling 0.904 (+/-0.013) 0.931 (+/-0.009) 0.917 (+/-0.009) 
Exchange 0.942 (+/-0.006) 0.859 (+/-0.017) 0.898 (+/-0.009) 
Finance 0.882 (+/-0.021) 0.870 (+/-0.019) 0.876 (+/-0.014) 
High-risk 0.956 (+/-0.010) 0.955 (+/-0.009) 0.956 (+/-0.006)  
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mean (m) and standard deviation (std) are summarized in the form of m (+/- std) in Table 9. Specifically, the experimental parameters 
are set as follows: T = 24(hours), nMin = 10, nMax = 128, m = 10, batch size = 64, epochs = 5000. 

In Table 9, the F1-score is between 0.691-0.825 and the overall results are not very satisfactory. This is caused by the Ponzi dataset 
is too small, resulting in insufficient training of the LSTM network. Nevertheless, in the absence of contracts’ source code, our method 
can still effectively detect Ponzi malicious contracts. From Table 9, it can be seen that Precision ranges between 0.795 and 0.925, i.e., 
the correct rate is 79.5%–92.5%, with the highest being the High-risk-type and the lowest being the Exchange-type. The Recall is 
between 0.553–0.778, meaning that a contract’s type is correctly identified between 55.3% and 77.8%, with the highest being the 
Social-type and the lowest being the High-risk-type. The relatively high Precision and low Recall indicate that Ponzi contracts have 
high similarity in behavior patterns with other types of contracts. For example, the Recall of the High-risk-type is the lowest, which is 
consistent with reality, as Ponzi contracts are also often classified as High-risk-type. This may also indicate the existence of undisclosed 
Ponzi contracts in the High-risk-type. In addition, Ponzi contracts are also often disguised as Game-type and Gambling-type, so the 
Recall is also lower with Game-type and Gambling-type. We repeat the experiment using an improved model of LSTM, i.e. the GRU 
(Chung, Gulcehre, Cho, & Bengio, 2014) model, with the same parameter settings and experiment environment. The results are shown 
in Table 10. The results are slightly worse than those of the LSTM model. On our dataset, the time cost of GRU training is about 25% less 
than that of LSTM. This is because GRU reduces the computational complexity compared to LSTM, but can obtain training results close 
to those of LSTM. In Table 11 (our results are expressed in average.), the experimental results of our method are compared with the 
method of Chen et al. (2019d). Our method has better P, R, and F1 when (Chen et al., 2019d) only uses account features. Their results 
are better than ours after adding the opcode feature to its method. However, only a few contracts in Ethereum will publish the source 
code, which has a significant impact on the practicality of the method of Chen et al. (2019d), so our approach has better versatility. 

5. Related work 

The Ethereum platform can be viewed as a transaction-based state machine, which begins with a genesis state and incrementally 
executes transactions to morph it into some final state (Wood et al., 2014). Therefore, many researchers have a deeper insight into 
blockchain technology by studying transaction data on Ethereum. The transaction analysis research can also reveal the behavioral 
patterns on the blockchain, verify existing theories, or prove the effectiveness of new methods. In general, they can be broadly divided 
into four types of research directions, data acquisition study, empirical study, performance and security study, prediction and clas
sification study. 

5.1. Data acquisition study 

Ethereum contains a large amount of heterogeneous data, so it is not easy to efficiently obtain data while ensuring its completeness 
and correctness. Thus, many researchers have focused on data acquisition on the Ethereum platform and use them to support further 
study. Such as Kiffer, Levin, and Mislove (2017) and Nikolić, Kolluri, Sergey, Saxena, and Hobor (2018) collects transaction data by 
downloading and parsing block files. This method is simple and fast to implement, but they can’t collect complete data. That’s because 
the internal transactions are not stored in the blockchain and hence cannot be obtained by parsing blocks. This method will miss the 
interactions among smart contracts. Ethereum platform provides detailed Web3 APIs, and some researchers directly invoke them to 
collect data (Bartoletti, Lande, Pompianu, & Bracciali, 2017; Chen et al., 2017b). But there are two obvious shortcomings. One is that 
some of the APIs return data slowly due to their design, and the other is that they cannot obtain internal transactions. There are also 
some researchers to obtain data by crawling Ethereum explorer websites. Kalra, Goel, Dhawan, and Sharma (2018) and Bartoletti, 
Carta, Cimoli, and Saia (2020) both crawl relevant information from Etherscan (Team, 2017) and no secondary processing is required, 
which is relatively convenient. However, the website’s server usually only lists partial data and discourage automated crawlers to 
guarantee the availability to all visitors. Some other researchers obtain data by instrumenting Ethereum nodes (Chen et al., 2019b; 
2018a; Grossman et al., 2017; Zheng, Zheng, Dai, Chen, & Zheng, 2020). This method can collect more complete and accurate data 
than the other three methods. But the effectiveness of this method depends on the knowledge of Ethereum that researchers and de
velopers possess. Chen et al., in their previous work (Chen et al., 2018a), only collects the sender, receiver, and amount of money 
transferred in each transaction to investigate money transfer, contract creation, and contract invocation. But in their subsequent work 
(Chen et al., 2019b), they propose DataEther, a systematic and high-fidelity data exploration framework for Ethereum by exploiting its 
internal mechanisms. For now, Dataether is more efficient and comprehensive than other methods in terms of collecting data on 

Table 8 
The results of the difference between one type of contract and the rest.   

Others  

Precision Recall F1-score 

Game 0.827 (+/-0.003) 0.838 (+/-0.005) 0.833 (+/-0.004) 
Gambling 0.915 (+/-0.007) 0.786 (+/-0.012) 0.845 (+/-0.005) 
Exchange 0.930 (+/-0.003) 0.848 (+/-0.006) 0.887 (+/-0.004) 
Finance 0.909 (+/-0.011) 0.708 (+/-0.016) 0.796 (+/-0.012) 
High-risk 0.965 (+/-0.005) 0.876 (+/-0.027) 0.918 (+/-0.015) 
Social 0.878 (+/-0.010) 0.696 (+/-0.016) 0.776 (+/-0.010)  
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Ethereum. 

5.2. Empirical study 

There are many phenomena on Ethereum that can reflect user characteristics, economic behavior patterns, and mathematical 
problems. Therefore, some researchers have an empirical study by analyzing data from the Ethereum. Kiffer et al. (2017) explores the 
consequences of the hard fork, showing how the fork leads to unintentional incentives and security vulnerabilities. Bai, Zhang, Xu, 
Chen, and Wang (2020) study the evolutionary behavior of Ethereum transactions from a temporal graph point of view and found that 
the user’s wealth on Ethereum is very unfair from the very beginning. Ferretti and D’Angelo (2020) analyze the Ethereum blockchain 
with the complex networks modeling framework to verify if radical changes in the blockchain evolution happened. Somin, Gordon, 
and Altshuler (2018) analyze the network properties of the ERC20 protocol compliant crypto-coins’ transactions, which demonstrates 
that the network displays strong power-law properties and these results coincide with current network theory expectations. Pierro and 
Rocha (2019) aim to investigate whether and to what extent different variables influence the Ethereum transaction fees, and they shed 
light on how different variables might interact and influence the Gas Price. Spain, Foley, and Gramoli (2020) study the impact of a 
series of ICOs to understand the relationship between transaction fees, throughput, and latency in Ethereum and results showed that 
transaction costs are inversely proportional to waiting time. Liang, Li, and Zeng (2018) conduct a dynamic network analysis of three 
representative blockchain-based cryptocurrencies, which reflect the evolutionary characteristics and competitiveness of different 
cryptocurrencies. Sovbetov (2018) examines factors that influence the most common five cryptocurrencies price, and the relationship 
between the price of cryptocurrency and the crypto market. Fenu, Marchesi, Marchesi, and Tonelli (2018) analyze the factors that 
influence the success of ICO, which shows that the success of ICO has a certain relationship with the evaluation of related websites and 
the management of ICO tokens on the Ethereum blockchain. Torres, Steichen et al. (2019) conduct the systematic analysis of honeypot 
smart contracts by studying the universality and behavior of honeypot smart contracts and their impact on the Ethereum blockchain. 

Table 9 
The results of Ponzi type contracts and other types of contracts (with LSTM).   

Ponzi  

Precision Recall F1-score 

Game 0.873 (+/-0.038) 0.688 (+/-0.046) 0.768 (+/-0.029) 
Gambling 0.889 (+/-0.037) 0.658 (+/-0.046) 0.755 (+/-0.034) 
Exchange 0.795 (+/-0.042) 0.773 (+/-0.026) 0.783 (+/-0.029) 
Finance 0.878 (+/-0.043) 0.722 (+/-0.039) 0.791 (+/-0.028) 
High-risk 0.925 (+/-0.041) 0.553 (+/-0.056) 0.691 (+/-0.045) 
Social 0.883 (+/-0.037) 0.778 (+/-0.055) 0.825 (+/-0.027)  

Table 10 
The results of Ponzi type contracts and other types of contracts (with GRU).   

Ponzi  

Precision Recall F1-score 

Game 0.867(+/-0.043) 0.664(+/-0.082) 0.761(+/-0.057) 
Gambling 0.869(+/-0.034) 0.640(+/-0.044) 0.737(+/-0.039) 
Exchange 0.793(+/-0.038) 0.802(+/-0.036) 0.797(+/-0.027) 
Finance 0.881(+/-0.041) 0.731(+/-0.041) 0.798(+/-0.027) 
High-risk 0.920(+/-0.028) 0.532(+/-0.042) 0.674(+/-0.032) 
Social 0.873(+/-0.035) 0.762(+/-0.041) 0.813(+/-0.022)  

Table 11 
Compare with the results in Chen et al. (2019d).   

Precision Recall F1-score Features 
Chen et al. (2019d) 0.59 0.22 0.32 Account(XGBoost) 

0.91 0.73 0.81 Code(XGBoost) 
0.90 0.67 0.76 Account+Code(XGBoost) 
0.64 0.20 0.30 Account(RF) 
0.94 0.73 0.82 Code(RF) 
0.95 0.69 0.79 Account+Code(RF) 

Ours 0.88 0.70 0.77 14 Features(LSTM) 
0.86 0.68 0.76 14 Features(GRU)  
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5.3. Performance and security study 

The security and performance of blockchain have always been a hot topic of concern, and researchers have already achieved many 
results in this aspect. For example, Chen et al. (2017b) have done many works to alleviate the security issues of Ethereum. They 
propose a novel gas cost mechanism in 2017, which dynamically adjusts the costs of EVM operations according to the number of 
executions, to thwart DoS attacks. And in 2018, their group use graph analysis to conduct the first systematic study on Ethereum and 
proposes new approaches based on cross-graph analysis to address two security issues (Chen et al., 2018a). Followed in 2019, they 
investigate such inconsistent token behaviors with regard to ERC-20, the most popular token standard, and revealed 11 major reasons 
behind the inconsistency. Then they propose a novel approach to automatically detect such inconsistency by contrasting the behaviors 
derived from three different sources (Chen et al., 2019c). In their follow-up work (Chen et al., 2020b), they develop a smart contract 
online analysis framework named SODA and they also develop eight detection apps based on the SODA to detect the major vulner
abilities in smart contracts. 

Some research works focus on specific security issues in the blockchain. Nikolić et al. (2018) discover three kinds of vulnerabilities 
in smart contracts by transaction analysis from Ethereum. Bartoletti et al. (2020) explained the definition of the Ponzi scheme and the 
Ponzi contract on Ethereum, described how the Ponzi scheme deceived users, and finally classified the existing Ponzi scheme. 
Grossman et al. (2017) detected the reentrancy vulnerability in smart contracts through internal transactions and storage operations. 
Sun, Ruan, and Liu (2019) apply machine learning to Ethereum analysis and group users and smart contracts by using transaction 
information in existing blocks and proposes a new method for user identification and malicious user detection based on the clustering 
results. Chen et al. (2018b) use transaction features and code opcode features with machine learning to detect Ponzi schemes on 
Ethereum. Cheng et al. (2019) deploy the honeypot for six months and they observed an interesting type of transaction called zero gas 
transaction, which has been leveraged by attackers to steal ERC20 tokens. Rouhani and Deters (2017) study Ethereum transactions and 
analyze two of the most popular Ethereum clients, Geth and Parity, on a private blockchain to better understand the impact of different 
clients on Ethereum performance. 

Some researchers have developed specific tools to detect or mitigate security issues on Ethereum. Kalra et al. (2018) present a 
framework called ZEUS to verify the correctness and validate the fairness of smart contracts. Krupp and Rossow (2018) develop a 
generic definition of vulnerable contracts and use this to build a tool called TEETHER, which can help in finding, understanding, and 
preventing exploits before they cause losses. Liu et al. (2018) develop EClone, a semantic clone detector for Ethereum, to detect 
whether the contract is a clone contract. Because cloning contracts may amplify security threats or waste resources. Jiang, Liu, and 
Chan (2018) present a novel fuzzer called ContractFuzzer to test Ethereum smart contracts for security vulnerabilities. Ferreira Torres, 
Baden, Norvill, and Jonker (2019) introduce a tool that shields smart contracts and users on the blockchain from being exploited. Luu, 
Chu, Olickel, Saxena, and Hobor (2016) propose ways to enhance the operational semantics of Ethereum to make contracts less 
vulnerable and build a symbolic execution tool called Oyente to find potential security bugs. Ma et al. (2019) propose a method to 
reinforce the EVM when the smart contract contains vulnerabilities, and this method can stop dangerous transactions in real-time. 
Kolluri, Nikolic, Sergey, Hobor, and Saxena (2019) build an automatic tool called ETHRACER, which is effective at detecting a sub
tle yet dangerous class of bugs that existing tools miss. Torres, Schütte, and State (2018) focus on vulnerabilities related to integer bugs 
and introduce Osiris, a framework that combines symbolic execution and taints analysis, in order to accurately find integer bugs in 
Ethereum smart contracts. Rodler, Li, Karame, and Davi (2018) propose a novel smart contract security technology named Sereum, 
which protects existing deployed contracts against reentrancy attacks in a backward-compatible way based on runtime monitoring and 
validation. 

5.4. Prediction and classification study 

There are also some researchers find the behavior pattern, model the features of smart contract or transaction by data mining, they 
use machine learning or other algorithms to make prediction or classification research. Singh and Hafid (2019) present a novel 
approach to estimate the time it would take for a mining node to accept and confirm a transaction to a block using machine learning. 
Norvill, Pontiveros, State, Awan, and Cullen (2017) propose a framework to group together similar contracts within the Ethereum 
network using only the publicly available compiled code of contracts. He, Wu, Wang, Guo, and Jiang (2020) study to characterize the 
code reuse practice in the Ethereum smart contract ecosystem and to cluster contracts based on the similarity of bytecodes. Chen, 
Narwal, and Schultz (2019a) use various classification methods to predict the price sign of Ethereum, and all methods achieved above 
50% accuracy. 

5.5. Summary 

Our work has covered all four aspects of research on Ethereum mentioned above.  

1. Data Acquisition Study. The premise of our work is to collect complete contract and transaction data, and thus we have combed 
through the research on how to obtain Ethereum data in Section 5.1. The transactions we need to collect include both external and 
internal transactions (as we mentioned in Section 2.3), so it is not possible to get the complete data directly from parsing the blocks. 
Many works use the API provided by Etherscan to download transaction data, but direct use this data collection scheme can only get 
the last 10,000 transactions. We found that it is possible to get all the transactions of a contract by modifying the block ranges. This 
method can flexibly obtain the transactions of a single contract. However, due to the limitation of the server, it is not possible to 
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download transactions for a large number of contracts quickly. Thus, we also use the Parity client and set it to tracing-on mode so 
that it can compute and store tracing data. The data we obtain in these two ways can be cross-validated to ensure that they are 
correct. Compared to other works, although it is not possible to obtain customized data, our method of obtaining transactions is 
simpler and more convenient, while also ensuring the integrity of the data.  

2. Empirical Study. In Section 5.2, the empirical study on Ethereum is summarized. Our work has also contributed to empirical study. 
Based on our analysis of these contracts in Section 3.2.1–3.2.4, we find that their transaction behavior has independent charac
teristics among different types of contracts. These peculiar patterns of behavior are consistent with actual phenomena. For ex
amples, in a game-type contract usually shows the behavior of their Balance cliff-like reduction. That is because there is a winner in 
the game, and part of the Balance sends to the winner as a bonus. In a gambling-type contract, the Ether flow in and flow out show a 
fixed ratio relationship. This is consistent with the fixed odds situation in gambling. In a Ponzi contract, the sooner the account 
participates in the contract, the more times they are rewarded, which is significantly higher than that of the account participants 
later. This is consistent with the phenomenon of Ponzi schemes, in which early participants benefit from the investments of late 
participants, while late participants are less likely to make money.  

3. Performance and Security Study. Blockchain security and performance have been the focus of research, which we review in 
Section 5.3. We believe that the classification and detection approach in this paper is important from the aspects of enhancing 
security, performance, and management of smart contracts. The reasons are as follows: 1) Classifying the contracts is the first step 
of malicious contract detection. Different contracts (eg., the detection of game contracts and finance contracts) have different 
behavior characters, thus the corresponding detection focus is different. The classify scheme and features extracted in this paper 
may provide a reference to studies of malicious smart contracts detection. 2) The deployer of a contract may conceal their true 
purpose, for example, some Ponzi contracts are masked by investment plan. The classification and detection approach in this paper 
can help users to verify the probability of a contract belonging to a certain type, thus contribute to discovering contracts with 
ambiguous purposes. 3) Some contracts are flawed in their design and may consume too much GAS, thus causing financial loss to 
users, which simultaneously affects the performance of the blockchain. Our approach can help users to discover these contracts and 
thus avoid losses. 4) The detection of malicious smart contracts can mitigate the security problems in the blockchain. Our detection 
approach can be extended to anomaly detection, malicious contract detection, and unknown smart contract identification, which 
can contribute to alleviating the security issues caused by smart contracts.  

4. Prediction and Classification Study. Researches in this area are relatively insufficient, and the existing research is mainly focused 
on how to predict the price trends of cryptocurrencies in the blockchain. In Section 5.4, we review some related researches. Our 
work also contributes to this area. We extracted 14 features from the contract transactions, which were subsequently used to train 
the model through the LSTM network. Then, the trained model is used to classify smart contracts according to their scope of 
application, as well as to detect anomalous behavior of contracts and detect malicious contracts. In addition, classifying and 
examining the most common application cases can help those new smart contract developers in specific fields to understand which 
areas are worth more investment. 

6. Conclusion 

To address the security issues of smart contracts and to yield some useful insights into blockchain technology, we propose the 
transaction-based classification and detection approach for Ethereum smart contracts. We find out four patterns that can help us to 
have a better understanding of the contracts’ transaction behavior, and they could be used to distinguish the difference between 
different types of contracts. Then 14 basic features of a smart contract are constructed. After that, we propose a data slicing algorithm 
to construct the experimental dataset. And we use an LSTM network to train and test our smart contract datasets. We demonstrate its 
usefulness through three experiments, including the evaluation of differences between different types of contracts, anomaly detection, 
and malicious contract identification. 
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