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Artificial intelligence systems suffer from black-box adversarial attacks recently. To prevent this kind
of attack, a large amount of researches that reveal the nature of this attack has emerged. However,
the query count, success rate, and distortion in the existing works cannot fully satisfy the practical
purposes. In this paper, we propose a low-query black-box adversarial attack based on transferability
by combining the optimization-based method and the transfer-based method. Our approach aims to
improve the black-box attack with a lower number of queries, higher success rate, and lower distortion.
In addition, we make full use of surrogate models and optimize the objective function to further
improve the performance of our algorithm. We verified our method on MNIST (Lecun and Bottou,
1998) [1], CIFAR-10 (Krizhevsky et al., 2009) [2], and ImageNet (Deng et al. 2009) [3], respectively.
Experimental results demonstrate that our method can implement a black-box attack with more than
98.5% success rate and achieve specific distortion with less than 5% queries comparing with other
state-of-the-art methods.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, with the increased computing power and
ooming deep learning theory, AI (artificial intelligence) has been
pplied in a wide range of areas, such as image recognition
1,4–6], autonomous vehicle [7,8], natural language processing
9–11], and even human–machine confrontation [12,13]. How-
ver, the design of AI only considered the accuracy of specific
asks, while ignoring its safety and reliability to some extent. So
t is challenging to provide robustness to the complex and vari-
ble AI-based applications, which undoubtedly poses a security
hallenge to these applications.
Unfortunately, it has been shown that the decisions of AI al-

orithms are not robust to some carefully crafted inputs through
xtensive [15–18]. An attacker can trick AI algorithms by applying
slight perturbation to the input data. For example, we change

he decision of the victim model by adopting LBAT. As shown
n Fig. 1, the noise we add is imperceptible. Recently, researchers
ave shown that an attacker can add computationally generated
otes to traffic signal signs in the real world to deceive the com-
uter vision system of autonomous vehicles [19] and an attacker
an also deceive a facial recognition security system by wearing a
D-printed eyeglass frame [20]. Besides, Liu [21] shows attackers
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can generate adversarial audios by adding noise to original audios
which can control the existing AI speech recognition systems. It
can be seen that while AI provides convenience to our lives, it
also provides an opportunity for attackers with ulterior motives
to take advantage of it.

Adversarial attacks work by applying a slight perturbation to
the original data, which is invisible to humans but can change
the classification results of the AI models dramatically. We call
the modified samples adversarial samples, and the presence of
an adversarial sample resembles the models’ illusion.

Model robustness enhancement [22,23], input detection [24],
adversarial training [25,26], denoising [27,28] and reconstruc-
tion [29] have been adopted to protect AI models from the treats
of adversarial attacks. However, due to the diverse ways of gener-
ating adversarial samples, the defense method that can deal with
different types of adversarial attacks has not been proposed. In
addition, most of the existing defense methods can only improve
a few adversarial attacks to a certain extent. For some time
to come, it is unrealistic to completely resolve the threat of
adversarial attacks. Therefore, adversarial attacks will be a long-
term threat to AI algorithms, related applications, and systems.
To enhance the robustness of the AI algorithms, we need deepen
the understanding of the AI algorithms by studying adversarial
attacks.

According to the known situation of the victim model, the
generation methods of the adversarial samples are divided into

white-box attacks and black-box attacks. The white-box attacks

https://doi.org/10.1016/j.knosys.2021.107102
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Fig. 1. LBAT was applied to Inception-V3 [14]. By adding an imperceptible noise, we can control the decision of the victim model.
ean that the attacker has a complete grasp of the model’s input,
utput, structure, and parameters, so the attacker can easily get
nd make full use of the gradient of the model to implement an
ttack. While the black-box attacks mean the attacker can only
ccess the model’s input and output and knows nothing about
he structure or parameters of the model.

With the joint efforts of researchers, a considerable amount
f white-box methods [15,25,30,31] have been proposed and the
hite-box generation methods for generating adversarial sam-
les can achieve excellent results. Due to the attackers can grasp
ll the information and gradient of the victim model, methods
ike [25,30,31] can implement adversarial attack with almost
00% success rate and extremely low distortions. However, in
eal-world attack and defense, it is difficult for an attacker to get
nformation about the victim model. Black-box adversarial sam-
les generation methods have become a hot topic of AI security
esearch because it is closer to the actual application environment
nd more challenging.
The methods of black-box attacks are mainly divided into

ransfer-based methods, optimization-based methods, and
ecision-based methods. The adversarial samples generated by
he transfer-based method have a low attack success rate and
equire large distortion. The optimization-based method requires
lot of queries which means a high probability to be detected
nd high implementation costs. The decision-based method can
enerate adversarial samples with a low distortion, but it still
equires a large number of queries.

In this paper, we propose an approach that implements a
lack-box attack on deep neural networks. Our approach is
amed LBAT, denoting A (L)ow-query (B)lack-box Adversarial
A)ttack Based on (T)ransferability.

Our contributions are as follows:

(1) We utilize the transferability of the adversarial samples to
implement the black-box attacks. By attacking models with
the same task (surrogate models), we obtain the adver-
sarial vector which is applied for the gradient estimation.
Our method has been tested on the MNIST [1], CIFAR-10
[2], and ImageNet [3]. Experiments show that our method
can implement the targeted attacks on the above datasets
with at least a 98.5% success rate. Compared with the ex-
isting adversarial sample generation method, the number
of queries to achieve specific distortion has been greatly
reduced.

(2) When the surrogate models are used to generate the adver-
sarial vector, LBAT randomly selects the surrogate model
and the parameters of the surrogate model in each step,
which can ensure that the generated adversarial vector has
large differences in each time. At the same time, we do
not need to perform a complete white-box attack on the
surrogate model, but the intermediate data generated in
the first few steps, which increases the speed of generation.
2

(3) Due to the values of the loss function is totally different
between the surrogate models and the victim model during
the black-box attack optimization. We optimize the loss
function of the white-box attack by adding the dynamic
coefficient to guarantee the loss function consistency be-
tween the white-box attack and the black-box attack. The
experiments show such measures reduce the number of
queries and improve the attack success rate.

The remainder of this paper is organized as follows: Section 2
reviews the related work in the area of black-box attack. Section 3
describes how to implement our method. Section 4 shows our
experimental design and results, and Section 5 concludes.

2. Related work

According to the different implementation methods, the exist-
ing black-box adversarial attack methods mainly have the prob-
lems of low success rate, a high number of required queries,
and a large amount of distortion required to generate adversarial
samples.

Adversarial attacks are divided into targeted and non-targeted
attacks according to the goal of the task. The non-targeted attacks
are used to change the decision results of the model, while the
targeted attacks are used to generate the sample that leads to the
specified classification or decision. Obviously, the targeted attacks
are more difficult to be executed as well as more threatening. In
the research field of black-box adversarial attacks, the non-target
attacks can be easily achieved, but existing methods still have
shortcomings to implement targeted attacks. Therefore, current
research is mainly focused on targeted attacks.

Here is a brief introduction to the existing black-box attack
methods.

Transfer-based method. The transferability of adversarial at-
tacks is different from transfer learning [32,33]. The adversarial
sample is transferable, that is, an adversarial sample generated
for a specific model has a higher probability of being adversarial
comparing to other models with the same task. This is due to the
similarity of the models’ boundaries towards the same task. By
using the transferability of adversarial samples, researchers have
proposed a variety of black-box adversarial sample generation
methods. Liu [34] optimizes the loss function and generates effec-
tive adversarial samples against multiple known models, which
greatly improves the transferable success rate of non-targeted
attacks and targeted attacks. Eq. (1) is the loss function of the
method.

argminx∗− log

((
k∑

i=1

αiJi
(
x∗
))
· 1y∗

)
+ λd

(
x, x∗

)
(1)

Where x denotes the original data, x∗ denotes the modified
data, Ji denotes the softmax outputs of the surrogate model, y∗
is the target label specified by the adversarial sample, αi are the
ensemble weight.
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Fig. 2. Curls & Whey attack trajectory [35]. Blue ring denotes the original image, green and purple arc denote two search directions, red arc denotes the adversarial
sample optimization.
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Shi [35] proposed a method to improve the transferable suc-
ess rate of adversarial samples between different models. The
ethod achieves the target by attacking a surrogate model which

s known to the attackers. And the attack trajectory is shown in
ig. 2. The method uses two directions to optimize the object at
he same time. One of the directions is to generate an adversarial
ample along the direction in which the loss function gradient
escents (green arc in Fig. 2). The other direction is to first obtain
he maximum value of the loss function along the gradient ascent
purple arc in Fig. 2) and then regenerate the adversarial sample
long the gradient descent. Until the victim model is misled, the
hite-box attack stops. Then, it will choose the better adversarial
ample (with lower l2 distance, purple ring in Fig. 2). Finally,
inary search and Whey Optimization (red arc in Fig. 2) are
dopted to further optimize the adversarial sample. This method
an increase the transferability of the adversarial sample, and
educe the distortions compared with a single search direction,
ut the distortion is still large and the success rate is unstable.
The transfer-based method usually has a low success rate and

sually causes a lot of distortions, but it does not need to query
o much on the victim model to implement an attack.
Optimization-based method. This kind of attack method

[36–38] generates adversarial samples by randomly changing the
input to estimate the gradient of the loss function. Chen [36]
proposed the method of zeroth order stochastic coordinate de-
scent to estimate the gradient. This method uses pixels as the
unit of estimation, which requires lots of queries to the model,
and when facing high-dimensional datasets, its attack accuracy
will decrease seriously. Tu [37] adjusts the intensity of each
pixel of the entire image randomly within a certain range, and
an encoder is employed to map the entire image to a low-
dimensional space, reducing the space required for estimation.
Tu [37] effectively reduces the number of queries, and the ac-
curacy of high-dimensional datasets is also relatively effective.
Although the application of the encoder reduces the space for
gradient estimation, it also increases the error of the calcula-
tion process, resulting in a large distortion. Liu [18] utilizes a
swarm evolutionary algorithm to generate adversarial without
gradient estimation, but still needs a large number of queries to
implement.

Decision-based method. The Decision-based methods are
able to generate adversarial samples only using the hard la-
bels [39,40]. This kind of method uses the original image and the
target label of the data as inputs and searches along the target
label boundary until the perturbation satisfying the requirement.
If the algorithm can be allowed to conduct with a large number of
queries, the distortion can be reduced to an astonishing degree,
even smaller than the distortions required by the white-box
 w

3

algorithm. However, the algorithm requires plenty of queries to
reduce the distortion to the degree that humans cannot perceive.

Hybrid attack. The hybrid attack [41–43] usually combines the
transfer-based attack and optimization-based attack to increase
the success rate and reduce the required queries. Suya [43] pro-
posed a method that attackers are able to use surrogate models
to find a candidate adversarial sample. After that, the attacker im-
plements an optimization-based method based on the candidate
adversarial sample. The candidate adversarial sample can be used
to implement an attack from a position that is better than the
original data, so Suya [43] greatly reduces the number of queries.
However, due to the use of a transfer-based attack, Suya [43] will
cause larger distortions.

In summary, the transfer-based method is limited by its suc-
cess rate and large distortions but requires a few queries.
Optimization-based methods and decision-based methods re-
quire a large number of queries, but their success rate is high
enough. To maximize their strengths and avoid their weaknesses,
hybrid attacks have been proposed. However, the existing hybrid
attacks still require larger distortions and a lot of queries. The
method we propose is a hybrid attack method that can balance
distortion, number of queries, and success rate.

3. Methodology

Our attack belongs to hybrid attacks. The attack environment
is the same as [42,43,43]. Our method generates adversarial sam-
ples without grasping the parameters, structure, activation func-
tions, and other information of the victim model. We aim at using
fewer queries and distortions to implement attacks. Our method
needs to grasp the input data and output probability values of
the victim model F . At the same time, we also need to acquire
several surrogate models (F1, F2, . . .Fn) which have the same task
s the victim model F . For the surrogate models, we are able to
cquire information such as parameters, structure, and activation
unction of these models.

Compared with the existing algorithms, LBAT can generate
mall-distortion adversarial samples with fewer queries, while
nsuring a higher success rate. On the one hand, we improve the
radient estimation process of the previous method by adopting
ransferability to make the queries more efficient. On the other
and, due to the efficient queries, we can give up the strategy of
sing the autoencoder, so it is more likely to generate adversarial
amples with small distortions. Furthermore, based on the above,
e randomly select the surrogate model to improve the efficiency
f adversarial vector calculation and adopt dynamic coefficients
o enhance the consistency between the loss functions of the

hite-box attack and the black-box attack.
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In this section, we first propose the framework of LBAT. Then
we introduce our gradient estimation method. Furthermore, we
propose our adversarial vector calculation method.

3.1. LBAT framework

As Fig. 3 shows, LBAT is divided into 2 parts, black-box gra-
dient estimation, and white-box adversarial vector calculation.
We adopt the zeroth-order optimization to estimate the gradient,
different from the previous methods [36,37,43], we use an adver-
sarial vector generated by the white-box attack, rather than the
random vector, which contributes to the efficiency of our gradient
estimation query.

Our algorithm is also optimized through iteration. LBAT calcu-
lates the adversarial vector at each step. We add the adversarial
vector to the current sample as a query vector, estimating the
gradient of the adversarial vector direction, and then update the
current sample.

3.2. Black-box gradient estimation

Similar to the white-box attack [31], the goal of our method is
to minimize the perturbation while changing the model decision
to a specific category. We adopt the classic definition method of
adversarial sample generation as Eq. (2).

minx′
x′ − x


s.t. f

(
x′
)
= l′

f (x) = l
l ̸= l′

x′ ∈ [0, 1]

(2)

Where x denotes the original sample, x′ denotes the generated
adversarial sample, f (·) denotes the output of the model, l and l′
re the output categories of the model F for the original sample x
nd the adversarial sample x′, and ∥·∥ denotes distance between

the original sample and the generated sample which is usually
measured by L0, L2, or L∞ norms.

Further, we translate the above problem into the following
formulation.

minimize D(x, x+ δ)+ λ · g(x+ δ)
such that x+ δ ∈ [0, 1]n (3)

Where g(·) is the objective function we defined. The definition of
g(x) is as Eq. (4)

g(x) = max
{
max
i̸=l′

log[f (x)]i − log[f (x)]l′ ,−κ

}
(4)

Only when the model’s output satisfies maxi̸=l′ log[f (x)]i −
log[f (x)]l′ < −κ , g(x) will output −κ , which means that the
attack is successful. λ in (3) is a constant used to control the
perturbation added during optimization. The larger λ means that
reater distortion can be tolerated in the optimization process.
is the distortion adding to the original data, and κ is the

onfidence of class l′.
In Eq. (4), the reasons why we use log[f (x)] instead of f (x)

re mainly to reduce the difficulty of optimization and promote
he optimization focus on classifying as a specific target, rather
han minimizing the maximum probability of non-specific target,
specially at the beginning of optimization.
Our method queries the point near the current data to esti-

ate the current gradient. Unlike the previous methods [36,37,
3], the coordinates of our query points are provided by the ad-
ersarial vectors by attacking the surrogate model. The gradient
stimation formula is as follow:

ĝ =
1
N

N∑ L (x+ δui)− L(x)
δ

ui (5)

i

4

Where L denotes the loss function which is shown in Eq. (3), ui
denotes the direction of the adversarial vectors, and ∥ui∥2 = 1.
N denotes the number of estimates around the current sample
x. In general, the larger N , the more accurate the estimation is.
Since LBAT uses adversarial vectors to estimate the gradient, the
ui is strongly referential. And we do not need a large number of
queries to estimate the gradient of one point to increase accuracy.
So in our algorithm, we set N = 1.

As for optimization, we use the ADAM optimizer [44]. ADAM
optimizer is one of the most popular optimizers used in deep
learning optimization. Unlike other deep learning applications,
our black-box attack cannot obtain accurate gradient information
of the current position. It only estimates the gradient of the
adversarial vector direction, which probably be inaccurate. So we
adjust the learning rate according to the gradient estimation of ĝ.

LR =
{
η, if ĝ >= 0
η/3, if ĝ < 0

(6)

Where η denotes the initial learning rate value we set. When
ĝ >= 0, we consider that the direction of the adversarial vector
s highly likely to be the correct optimization direction. While
ˆ < 0, we reduce the learning rate and consider that direction
s untrusted, due to we do not query the direction of −u.

.3. Adversarial vector calculation

The previous methods [36,37,43] add a random vector to es-
imate the gradient of the current data in the direction of the
andom vector, and the efficiency of queries along the gradients
n random directions is extremely low. In this paper, we perform
white-box attack on the surrogate models and add the obtained
dversarial vector to the current data to estimate the gradient.
In the specific implementation of our method, the white-box

ttack against the victim model only uses a small number of
terations to obtain an adversarial vector, instead of generating
n adversarial sample that is effective for the selected surrogate
odel. This generation method not only reduces the time for
enerating adversarial samples but also increases the diversity
f adversarial vectors. In our experiment, we set the number of
terations of the white-box attack to 5.

If only one surrogate model is used to generate the adversarial
ectors, the direction of each query will be similar. And the single
irection of the query is harmful to optimization. The strategy we
dopt is to randomly select one surrogate model in each step for
mplementing the white-box attack. In order to further improve
he difference of the adversarial vector of each query, we set the
arameters in the white-box attack to be within a certain range
andomly.

In this paper, we use the current sample as the input of the
hite-box attack. Carlini [31] with L2 norm is adopted to imple-
ent the white-box attack. The loss function of the Carlini [31]
ethod is the same as Eq. (3) and the objective function is as

ollow:

g(x) = max
{
max
i̸=l′
[f (x)]i − [f (x)]l′ ,−κ

}
(7)

here κ denotes confidence of our adversarial sample and we
eset κ to a random value each iteration. However, due to the
ifferent boundary between the victim model and the surrogate
odels, the optimization focus of the objective function of the
hite-box attack and the black-box attack is quite different. For
xample, since the goal of our algorithm is to achieve the black-
ox attack on the victim model, it often appears that the value of
he black-box attack objective function is much smaller than the
alue of the white-box attack objective function. Especially when
he loss function of black-box attack is close to 0 (the attack is
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Fig. 3. Framework of LBAT. In each step, we conduct the white-box attack on a random selection model to calculate the adversarial vector. Then, the adversarial
vector is added to the current image to get the query image. Next, we evaluate the gradient along the direction of the adversarial vector and use ADAM optimizer
to update current data. Until the victim model classifies the current data into the specified category, the iteration exits.
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almost successful), the white-box attack loss function non-target
part (maxi̸=l′ [f (x)]i) may not contribute to the optimization. The
oss function uses Eq. (7) may cause optimization difficulties.

To solve the above problem, we control the optimization fo-
us by adding a dynamic coefficient dc to the white-box attack
bjective function.

g(x) = max
{
max
i̸=l′
[f (x)]i − dc · [f (x)]l′ ,−κ

}
(8)

n order to ensure that Eq. (8) can be optimized at any condition,
e set κ = 2000. Here we propose 2 calculation methods of the
ynamic coefficient.

dc = min(
objmax

objcurrent
, 3) (9)

dc = min(

√
objmax

objcurrent
, 3) (10)

here obj is the objective function value of black-box attack.
bjmax denotes the maximum value that appears in the iteration.
bjcurrent denotes the objective function value of the current data.
e show the experiment result of our algorithm with different
ynamic coefficients in Section 4.
After implementing the white-box attack, we need to transfer

t to the format which can be the input of the query. So, we need
o transfer the white-box adversarial sample to the adversarial
ector. The transfer formulas are as follows:

η = advwhite − xcurrent
η =

η

∥η∥

(11)

The white-box attack of LBAT is shown in algorithm 1.
Where adv denotes the intermediate data generated in the

iterative process of the white-box attack. And the intermediate
data is not necessarily to be an adversarial sample but is partly
adversarial (the objective function value of the intermediate data
is more likely less than the data that is input to the white-box
attack). C&W(F (·)j, advwhite) denotes the white-box attack method
we adopt.

Our method uses the adversarial vector to evaluate gradient
rather than the random vector. This kind of strategy can improve
the efficiency of queries, and reduce the query count to generate
the adversarial samples. However, calculating the adversarial vec-
tor requires more queries to the surrogate models, and gradient

calculation of the surrogate models.

5

Algorithm 1 White-Box Attack of LBAT

Input: current data = xcurrent; Target label, y; Surrogate models,
F (·)1, F (·)2 · · · F (·)n; Max iteration, m(m <= 5);

utput: adversarial vector u;
1: randomly select a model from (F (·)1, F (·)2 · · · F (·)n), suppose

the model j is selected;
2: randomly set the white-box attack loss function constant cλ

in Eq. (3);
3: advwhite ← xcurrent;
4: for i = 0 to m do
5: advwhite ←C&W(F (·)j,advwhite) attack [31] with objective

function equation (10);
6: if advwhite is adversarial sample of Fj then
7: break;
8: end if
9: end for
0: η←advwhite − xcurrent;
1: u← η

||η||
;

12: return u

If we set the computational complexity of the black-box attack
with the random vector as O(m), the white-box attack gradient
alculation and query cost of each time as O(n). The computa-
ional complexity of LBAT of each step O(LBAT ) can be evaluated
as follows:

O(LBAT ) = 5 · O(n)+ O(m) (12)

5 means maximum iteration used in LBAT. According to
Eq. (12), our method requires more calculation in each step.
For the black-box adversarial attack, the main cost is the query
to victim model, while the costs of the query to the surrogate
models and the gradient calculation are relatively low. Besides,
the maximum iteration we use is still little. So, compared with
the black-box attack with random vector, the cost of LBAT is
acceptable.

4. Experiment

This section presents the experiment setup, evaluation,
method setting, and performance compared with state-of-the-art
black-box attack methods.
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.1. Experiment setup

We use several representative benchmark datasets, including
NIST [1], CIFAR-10 [2], ImageNet [3].
The MNIST is composed of grayscale images composed of

andwritten digits. The size of the image is (28 × 28 × 1). The
raining set contains 60,000 images, and the test set contains
0,000 images. The surrogate models and the victim model used
n our experiment are trained by the same training set, but the
tructure is different. The data for the black-box attack comes
rom the test set. MNIST [1] has 10 categories.

The CIFAR-10 [2] is composed of relatively unclear RGB im-
ges, and the size of the image is (32 × 32 × 3). The training
et contains 50,000 images, and the test set contains 10,000
mages. The surrogate models and the victim model used in our
xperiment are all trained from the training set, but the structure
s different. The data for the black-box attack comes from the test
et.
ImageNet [3] is an RGB dataset. The dataset consists of more

han 10 million images that belong to 1000 categories (there
re also 1001 categories ImageNet [3] dataset). The classification
ccuracy of this dataset has long been used as the performance
valuation standard for image classification models. The dataset
as multiple input sizes, and our experiment unified the data
o 299 × 299 × 3. We use Inception-V3 [14] (require input:
99 × 299 × 3) as the victim model, InceptionResNet-V2 [45]
require input: 299 × 299 × 3), NASNetLarge [46] (require input:
31 × 331 × 3), Xception [47] (require input: 299 × 299 × 3),
enseNet121 [48] (require input: 224 × 224 × 3), MobileNetV2
49] (input: 224 × 224 × 3) are the surrogate models. For sur-
ogate models with different input requirements, we modify the
mage size to fit the models. The above models are all selected
o be trained by the ImageNet [3] training set, and the black-box
ttack data comes from the test set.
We compare our attack with Tu [37], Chen [40] and Suya [43].

or [37], we use the Autoencoders provided in their Github. For
hen [40], we randomly pick the data whose label is different
rom the attacked ones from the training set as target images.
or Suya [43], we use the surrogate models the same as we use
n ours.

Since the difficulty of solving non-targeted attacks has been
ell resolved, our experiments mainly focus on targeted attacks.
or MNIST [1] and CIFAR-10 [2] which have 10 categories of
abels, we randomly select 10 images for each category to attack,
nd the target label includes all categories except their original
abels. For ImageNet [3] which has 1000 categories of labels, we
andomly select 100 images to attack. Meanwhile, we randomly
elect 2 labels as our target labels.

.2. Evaluation index

We use the following indexes to evaluate the performance of
he algorithm.

(1) Attack success rate. We use the attack success rate to eval-
uate the reliability of the attack. The query upper bound we
set is different among the evaluated methods. The number
of maximum queries varies with the methods’ capabili-
ties and characteristics. We set the maximum number of
queries to 100,000 for Tu [37], Chen [40], Suya [43] and
5000 for LBAT for the reason that LBAT is more efficient
for each query, but it takes longer time to generate.

(2) Mean query count of the initial attack. We record the num-
ber of queries required by the initial success attack each
time and calculate the average of different attack methods.
For decision-based attacks like Chen [40] which is different
from the others, their number of queries of initial attack is
not meaningful because of their large distortion, so we do
not record this index.
 t

6

Fig. 4. LBAT Performance evaluation with different dynamic coefficient.

able 1
erformance evaluation of black-box targeted attacks with different objective
unction on ImageNet [3].
Objective function Successful rate Distortion Query count

Original 93.00% 6.36E−05 674.68
g1(x) 97.00% 7.92E−05 413.27
g2(x) 98.50% 7.18E−05 499.67

(3) Mean query count with per-pixel specific L2 distortion. The
attack stop condition we set is to satisfy a certain distor-
tion requirement, instead of implementing an adversarial
attack.

(4) Attack success rate in specific queries. We use the attack
success rate under a specific number of queries. Similar to
the maximum number of queries, the specific numbers set
for different methods are also different.

(5) Attack success rate with a specific L2 distortion. This index
shows the percentage of attacks that satisfy the termina-
tion condition within the maximum number of queries.

(6) Mean per-pixel L2 distortion. This index evaluates the in-
visibly of the adversarial attack.

.3. Objective function selection

In Section 3.3, we have introduced our dynamic coefficients.
n this section, we test the effect of dynamic coefficient through
xperiments and choose the best dynamic coefficient. The exper-
ment is performed on the ImageNet [3].

The g1(x) and g2(x) in Fig. 4 and Table 1 denote the ob-
ective function adopted the dynamic coefficient equation (9)
nd Eq. (10) respectively. As shown in Fig. 4 and Table 1, we
re able to find that dynamic coefficients can indeed reduce the
umber of queries and increase the success rate of adversarial
ttacks. However, dynamic coefficients will increase distortion
lightly.
Both objective functions with dynamic coefficients have simi-

ar performance. Comparing g2(x) with g1(x), g2(x) has higher suc-
ess rate and lower distortion, while requires 20% more queries.
or the sake of balance, we use g2(x) as objective function in the
ollowing experiments.

.4. Black-box attacks on MNIST and CIFAR-10

Tables 2 and 3 show the performance evaluation on MNIST
1] and CIFAR-10 [2] with different kinds of algorithms. Tu [37],
uya [43] and our algorithm use the zeroth-order optimization

o optimize the algorithm, and we set the λ = 10 in Eq. (3).



K. Ding, X. Liu, W. Niu et al. Knowledge-Based Systems 226 (2021) 107102

s
L
M

s
d
a
o
s
f

s
i
1
t
C
a

a

4

w
[
w
A
g
h
n
a
t
s

v
a
r
u

Table 2
Performance evaluation of black-box targeted attacks on MNIST [1].
Method Autozoom-AE [37] Hop Skip Jump [40] Hybrid batch attack [43] Ours

Attack success rate (ASR) 100% 100% 100% 100%
Mean query count (initial success) 1279.64 – 603.39 62.26
Mean query count with per-pixel L2 distortion<1E-4 23778.68 4612.24 2716.05 93.34
Attack success rate within 5000 queries 17.6% – 63.9% 90.0%
Attack success rate L2 distortion<1E-4 41.7% 100% 62.7% 100%
Mean per-pixel L2 distortion (initial success) 7.8E−3 – 6.4E−3 3.7E−3
Table 3
Performance evaluation of black-box targeted attacks on CIFAR-10 [2].
Method Autozoom-AE [37] Hop Skip Jump [40] Hybrid batch attack [43] Ours

Attack success rate (ASR) 100% 100% 100% 100%
Mean query count (initial success) 213.71 – 37.14 30.98
Mean query count with per-pixel L2 distortion<1E-4 5141.95 968.55 4150.92 41.91
Attack success rate within 5000 queries 59.1% – 95.4% 98.2%
Attack success rate L2 distortion<1E-4 100% 100% 24.4% 100%
Mean per-pixel L2 distortion (initial success) 1.9E−3 – 1.49E−3 6.14E−4
q
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As Tables 2 and 3 show, all algorithms can achieve a 100% suc-
cess rate to generate an adversarial sample. We can find our
algorithm needs much fewer queries than the others to generate
adversaries. For example, the mean query counts required by our
algorithm to get an initial success are reduced by 95.3%, 89.7%
compared with Tu [37] and Suya [43] respectively on MNIST [1].
And on CIFAR-10 [2], the initial success is reduced by 85.5% and
16.6% respectively.

Our algorithm has a higher probability to generate adversarial
amples successfully in specific queries. Tables 2 and 3 show that
BAT has 90% and 98.2% success rate to generate adversaries on
NIST [1] and CIFAR-10 [2] respectively.
Besides, LBAT can generate an initial adversarial sample with

maller distortion than others. For example, our initial success
istortion is 47.4% of Tu [37] and 57.8% of Suya [43] on MNIST
nd 14.50% of Tu [37] and 83.41% Suya [43] on CIFAR-10 [2]. Not
nly our algorithm can generate an adversarial sample within the
pecific distortion with a higher success rate, but also need much
ewer queries to reach the specific distortion.

According to the number of queries required for the initial
uccess of different kinds of black-box attacks, we can infer that
t is much easier to implement a black-box attack on CIFAR-
0 [2] than MNIST [1]. We think the reason lies in that under
he same number of labels of images, compared with MNIST [1],
IFAR-10 [2] has more dimensions to be modified to generate an
dversarial sample.
It is easy to know that LBAT has better performance in almost

ll evaluation aspects applied to small datasets.

.5. Black-box attacks on ImageNet

Table 4 shows the performance evaluation on ImageNet [3]
ith different kinds of black-box attack methods. For ImageNet
3], we set the λ = 10 and N = 1 (N denotes the number of vectors
e use to evaluate gradient each step) for Tu [37] and Suya [43].
nd we set λ = 100 for our algorithm. A larger λ means fewer
eneration queries, but it also produces greater distortion. [37,43]
ave a better balance effect when λ = 10. Our algorithm does
ot use auto-encoders and requires smaller distortion to generate
dversarial samples. Therefore, we can set a larger λ to facilitate
he generation of adversarial samples using fewer iterations. We
how different λ performance evaluations in Table 5 and Fig. 5.
Fig. 5 shows the relationship between the objective function

alue and the number of iterations. When the iteration stops,
larger objective function value means a lower attack success

ate and greater distortion. Fig. 5 logarithmizes the ordinate axis,
sing the logarithm to base 2. As shown in Fig. 5 and Table 5,
7

Fig. 5. LBAT performance evaluation with different λ.

when λ = 100, the balance of attack success rate, number of
ueries, and distortion of our algorithm is better than others.
hile λ = 10 requires much more queries and λ = 1000 cannot

educe the number of queries and produce larger distortion.
As shown in Table 4, our algorithm is the only one that cannot

enerate an adversarial sample with a 100% successful rate, but
8.5% is still a very high success rate. We think the reason why
e cannot achieve a 100% success rate is that the limitation of
ur reference models. We use 5 surrogate models in our algo-
ithm, we can consider that we have 5 alternative optimization
irections for each iteration. Although the alternative directions
ave a high probability to be a good optimization direction,
hey may still be bad optimization directions in a certain space,
ausing optimization shocks. Besides, it is obvious that the more
urrogates models we use, the higher the success rate we can
et. We can improve our success rate by adding more surrogate
odels.
As for the number of queries and the size of the distortion,

BAT is significantly less than others. At first, our queries for
nitial success are only 3.27% of the Tu [37] and 11.4% of the
uya [43]. Then our attack requires 1.11% and 2.58% number of
he queries to generate attack within 1E − 4 L2 distortion com-
ared with Tu [37] and Chen [40] respectively, and the Suya [43]
ven cannot generate an adversarial sample within such distor-
ion, due to the large distortion caused by the ensemble attacks
nd autoencoder.
Our success rate in 5000 queries is the same as our initial

uccess rate and nearly 9 times than Tu [37] and 150% than
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Table 4
Performance evaluation of black-box targeted attacks on ImageNet [3].
Method Autozoom-AE [37] Hop Skip Jump [40] Hybrid batch attack [43] Ours

Attack success rate (ASR) 100% 100% 100% 98.50%
Mean query count (initial success) 15270.54 – 4376.02 499.67
Mean query count with per-pixel L2 distortion<1E-4 44973.18 19393.63 None 499.67
Attack success rate within 5000 queries 11.50% – 67.50% 98.50%
Attack success rate L2 distortion<1E-4 90% 100% 0 98.50%
Mean per-pixel L2 distortion (initial success) 1.4E−4 – 5.6E−4 7.18E−05
Table 5
Performance evaluation of black-box targeted attacks on ImageNet [3] with different λ.
λ Attack success

rate (ASR)
Mean query count
(initial success)

Attack success rate
L2 distortion
<0.0001

Mean per-pixel
L2 distortion
(initial success)

λ = 10 95.0% 637.83 95.0% 5.92E−5
λ = 100 98.5% 499.67 98.5% 7.18E−5
λ = 1000 97.5% 578.14 89.0% 8.07E−5
Fig. 6. Adversarial samples generated by LBAT.
X
i

uya [43]. In addition, our initial success distortion is 51.3% of
u [37] and 12.84% of Suya [43].
Compared with MNIST [1] and CIFAR-10 [2], adversarial at-

ack on ImageNet [3] requires much more queries, due to the
arge search optimization space. However, LBAT can implement
dversarial attacks on ImageNet [3] with a much lower query
ount.
The Fig. 6 shows a case study of LBAT on ImageNet [3]. The first

ow shows the original image, the second row shows the noise
enerated by the adversarial samples, and the third row is the
enerated adversarial samples. It can be seen that the distortion
aused by our algorithm for adversarial samples generating is
lmost invisible.
Implementing black-box attacks on ImageNet [3] is challeng-

ng. However, our algorithm has excellent performance on attack
asks against ImageNet [3]. By comparing with the state-of-the-
rt methods, LBAT can reduce at least 88.6% query count to
chieve the initial success and 97.42% query count to imple-
ent adversarial attack within specific L2 distortion. Besides, our
ethod has the highest success rate to reach specific distortion.

. Conclusion

In this paper, we focus on deepening the understanding of
he security of AI algorithms. Like other hybrid attack methods,
8

our approach combines transfer-based and optimization-based
attacks. Distinctively, we adopt the random model, random pa-
rameters, and dynamic coefficient strategies to calculate the ad-
versarial vector to improve the efficiency of queries. By evaluating
on multiple datasets, LBAT demonstrates its efficient query abil-
ity, that is, it can achieve the black-box attack with low distortion,
low query counts, and high success rate. Our future work about
the black-box adversarial attack will focus on performing our
method with the surrogate models which are not training on the
same dataset.
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