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Abstract: Recent work has shown that deep neural networks are vulnerable to backdoor attacks. In
comparison with the success of backdoor-attack methods, existing backdoor-defense methods face
a lack of theoretical foundations and interpretable solutions. Most defense methods are based on
experience with the characteristics of previous attacks, but fail to defend against new attacks. In this
paper, we propose IBD, an interpretable backdoor-detection method via multivariate interactions.
Using information theory techniques, IBD reveals how the backdoor works from the perspective of
multivariate interactions of features. Based on the interpretable theorem, IBD enables defenders to
detect backdoor models and poisoned examples without introducing additional information about
the specific attack method. Experiments on widely used datasets and models show that IBD achieves
a 78% increase in average in detection accuracy and an order-of-magnitude reduction in time cost
compared with existing backdoor-detection methods.
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1. Introduction

With the application of deep-learning techniques in computer vision, services based on
image and video classification (e.g., autonomous driving [1–3], face recognition [4,5]) have
become a significant convenience in our daily lives. However, security incidents caused
by deep-learning model crashes occur on a regular basis. As a result, the vulnerability of
deep-learning algorithms has become a major public concern, as well as the focus of current
research. Recent research indicates that deep neural networks (DNNs) are vulnerable
to backdoor attacks in which adversaries inject backdoors into victim models via data
poisoning [6] or structure modifying [7]. The infected model behaves normally on benign
examples, while maliciously when handling examples with specific triggers.

Sensors are more and more implicated with deep-learning techniques due to the
progress in the internet of things [8–10]. However, existing studies on backdoor attacks
against DNNs have demonstrated that backdoor attacks may occur throughout the lifetime
of a deep-learning model, including model during training [6,8,9], model transmission [7],
and model application [10], which makes them a great threat against deep-learning-based
sensors. Meanwhile, attackers may maliciously use the sensors and inject a backdoor [11].
Therefore, mitigating the threat of backdoor attacks is critical. Wang et al. [12] first pro-
posed to detect backdoor models by reversing potential triggers. Some subsequent works
focused on the characteristics of triggers and proposed to detect backdoor models via image
mixture [13] or adversarial example generation [14].

However, despite the initial success of existing backdoor-defense methods against
already-known attacks, their transferability and interpretability are still not guaranteed.
Several of the latest backdoor attack approaches [15,16] have shown the ability to bypass
existing defense methods, as the triggers of these new attacks exhibit different characteris-
tics from previous attacks. In particular, existing backdoor-defense methods are still faced
with the following challenges:
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(Challenge 1) Due to the lack of theoretical analysis from the perspective of inter-
pretable methods, existing backdoor-defense methods are mainly empirical. Thus, the
effectiveness of these methods is not guaranteed.

(Challenge 2) Most existing defense methods are based on the summation of the
characteristics of previous backdoor attacks, which makes them less effective when han-
dling unknown new attacks, especially when new attacks are designed to have different
characteristics from previous methods.

(Challenge 3) Methods based on trigger reversing or model training introduce addi-
tional significant computational costs. With the increase in model and dataset size, the
computational resources required may become unacceptable.

Therefore, it is necessary to investigate the rationale of backdoor attacks using inter-
pretability methods and further propose transferable and robust defense approaches.

Interpretable backdoor-detection methods. To address the above challenges, we
propose IBD, an interpretable backdoor-detection method via multivariate interactions.
We first analyze the multivariate interactions of different categories in classification models
and demonstrate that the abnormal cooperative relationships in poisoned models can be
used to detect backdoor models. Furthermore, we propose a multivariate-interaction-based
approach for backdoor model detection, which enables defenders to perform detection
under black-box constraints with acceptable time costs. Figure 1 gives a visualization of
the overall structure of IBD. Our main contributions can be summarized as follows:

• Taking advantage of information theory techniques, we theoretically analyze the
multivariate interactions of features from different categories and reveal how the
backdoor works in infected models (addressing Challenge 1);

• Following the theoretical analysis, we propose a theoretical-guaranteed defense
method IBD, an interpretable backdoor-detection method via multivariate interactions.
IBD outperforms existing defense methods for detecting both baseline attacks (attacks
that existing defense methods have taken into consideration) and new attacks (attacks
that can bypass existing defense methods) (addressing Challenge 2);

• Guided by the theoretical foundations of IBD, we further accelerate IBD by simply
calculating the summation of the logits of several input examples from different
categories. Therefore, defenders can detect malicious models without additional
information about the parameters and structures of the target model (addressing
Challenge 3).
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Figure 1. The overall structure of IBD. (a) Multivariate interactions of different categories in be-
nign and poisoned models. (b) A multivariate-interaction-based simple approach for backdoor
model detection.

We evaluated our multivariate-interaction-based backdoor-detection method and the
simplified version on different datasets. Experimental results show that the multivariate-
interaction-based method can divide benign and poisoned models with high detection
accuracy. Furthermore, IBD achieves a 99% reduction in time cost and a 78% increase in
detection accuracy on average compared with existing defense methods.
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2. Related Work
2.1. Deep Backdoor Attack

The deep backdoor attack, also known as the Trojan attack, is originally a special
variant of the model poisoning attack. Adversaries inject the backdoor into deep-learning
models by poisoning the training dataset with examples containing a specific trigger [6].
BadNets [6] was the first backdoor-attack method against deep neural networks, which
gave the definition and explored the fundamental approaches of backdoor attacks. How-
ever, poisoned examples with visible triggers and incorrect labels are easy to detect by
humans or autonomous detection algorithms. Therefore, later studies on backdoor at-
tacks mainly focus on the invisibility of triggers and the label-consistency of poisoned
examples. Chen et al. [17] proposed a blending-based backdoor-attack method that blends
instead of attaching triggers to poisoned examples. Nguyen et al. [15] proposed WaNet,
an elastic-warping-based backdoor-attack method using warping-based triggers that are
stealthier to human inspection. Doan et al. [16] proposed LIRA, a learnable, imperceptible,
and robust backdoor-attack method. LIRA formulates the backdoor attack process in a
constrained problem of finding the optimal trigger generator and the optimal victim classi-
fier. It alternately updates the generator and the classifier and, hence, makes the triggers
sample-specific and invisible.

Several other studies have explored backdoor attacks that occur throughout different
stages [7,18]. Tang et al. [7] proposed a training-free backdoor-attack method by simply
inserting a tiny Trojan model (TrojanNet) into the target model. Thus, the backdoor can be
injected into the victim model during the transmission process of models. Rakin et al. [18]
took advantage of the bit-flip method [19] and proposed a test-time backdoor-attack method:
TBT. TBT injects a backdoor into a victim model by directly modifying the model parameters
stored in the main memory (DRAMs). Therefore, TBT can bypass most training-time- or
fine-tune-based defense methods since it occurs in test time.

According to the above research, backdoor attacks can occur during the whole lifetime
of deep-learning models, including the training, transmission, and deployment processes.
Furthermore, the format of triggers is flexible, which further increases the difficulty of
backdoor defense.

2.2. Deep Backdoor Defense

To alleviate the increasing threat of deep backdoor attacks, several backdoor-defense
methods are proposed. Li et al. [20] divided existing defense methods into two categories
based on their theoretical foundations: empirical and certified backdoor defenses. Empiri-
cal methods extract some features of existing attacks and achieve decent performance when
dealing with already-known attacks. Neural Cleanse [12] is the first backdoor-defense
method that detects backdoor models by reversing potential triggers. However, the as-
sumption of Neural Cleanse that backdoor triggers are smaller than benign features is not
transferable enough, i.e., triggers may have different features that Neural Cleanse does not
take into consideration. Gao et al. [13] proposed STRIP, which detects poisoned examples
by performing an image linear blend. The prediction of the blended images trends to stay
constant when any test image contains a specific trigger. Some later researchers attempted
to use deep-learning models to detect backdoors, Kolouri et al. [14] took advantage of
the fact that backdoor models may behave differently from clean ones when dealing with
adversarial examples and proposed universal litmus patterns (ULPs). However, ULPs
require generating universal adversarial patterns for each category of the target model,
which will cause an unacceptable increase in time cost with the increase in the number of
categories.

In this paper, we focus on the detection of poisoned models and examples. Different
from most previous defense methods that are based on prior assumptions about existing
attacks, we initially explore the training process of victim models and the functioning
principle of backdoors from the perspective of interpretable methods. Then, we use the
principles to guide backdoor detection without prior knowledge about the training dataset
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or the type of trigger. Therefore, our method achieves better transferability against different
attack methods.

2.3. Shapley Value

Some previous studies on interpretable theorems of deep-learning algorithms formulate
the classification problem as an n-player game from the perspective of game theory [21–23].
The fundamental theorem of these studies is the Shapley value [24], which is considered as
a fair algorithm to measure the contributions of different players in a game [25]. Consider
an n-player game v : Si → R, where N = {1, 2, · · · , n} denotes the set of all players and
S = {S1, S2, · · · , S2n} denotes the superset made up by all 2n subsets of N. According to
the definition of the Shapley value [24], the unbiased contribution of thei-th player can be
calculated as:

φv(i|N) = ∑
S⊆N

(n− |S| − 1)!|S|!
n!

[v(S ∪ {i})− v(S)] (1)

where (n−|S|−1)!|S|!
n! denotes the probability of a certain subset Si and [v(S ∪ {i})− v(S)]

denotes the variance of the reward before and after the introduction of the i-th player.
Later, Zhang et al. [23] proposed to use the Shapley value to interpret the multivariate

interactions of different parts of the input example during the classification process of deep
neural networks. Given two players i and j with their Shapley values φv(i|N) and φv(j|N),
the interaction between i and j is defined as:

B(Sij) = φ(Sij|N
′
)− [φ(i|Ni) + φ(j|Nj)] (2)

where B(Sij) represents the interaction of the player i and the player j, and φ(Sij|N
′
)

denotes the Shapley value of the player ij when considering i and j as a unit.

3. Methodology
3.1. Problem Formulation

Multi-category classification. The goal of the standard supervised classification task
is to learn a parameterized mapping function Fθ : X → C, where X is the input domain
and C denotes the set of target classes [16]. Generally, the classification process contains
two stages: feature extraction, and prediction. The mapping function Fθ extracts n features
{ f1, f2, · · · , fn} from the input example x and then makes predictions based on these
features. Therefore, the classification task can also be formulated as an n-player game from
the perspective of game theory [23]. In this game, n players denote n features of the input
example, and the reward denotes the output scalar of the prediction function. All players
cooperate and compete with each other to obtain the overall reward. In this paper, we focus
on the image classification task, where n features are implemented as the neurons in the
layer before the last full-connection layer of the image classification model; the reward is
implemented as the score of the true category before the softmax layer.

Deep backdoor attack. Following the definition of deep backdoor attacks [15,16], the
adversary designs a transformation function T to transform a clean example (x, y) into
a poisoned example (x̂ = T(x), ŷ), where y and ŷ denote the clean label and the target
label determined by the adversary, respectively. Then, the adversary injects the backdoor
into the victim model F by poisoning the training dataset [15,16] or by modifying the
model structure [7] or parameters [18] directly. Therefore, the behavior of F is altered as:
F(x) = y, F(T(x)) = ŷ.

Deep backdoor detection. For the detection of deep backdoor attacks, the goals can
be divided into model-based detection and sample-based detection. Model-based detection
methods attempt to classify poisoned models and benign models. Sample-based detection
methods aim to detect triggers in poisoned examples and alleviate the risk by removing
triggers or performing transformations on poisoned examples.

In this paper, we are interested in detecting backdoor attacks in image classification
models. The main focus of our method is to propose a backdoor model detector Dm
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together with a poisoned example detector Ds for model-based detection and sample-
based detection, respectively. The design principles of the two detectors are based on the
interpretable theorem of DNNs. Specifically, for a k-category image classification model
F, we use the backdoor model detector Dm and a small set of images S = {x1, x2, · · · , xm}
from k classes to evaluate the inter-class multivariate interactions of image features from
different classes: target = Dm(F, S), target ∈ {φ, 0, 1, · · · , k− 1}. For backdoor models, Dm
will output the target class ŷ = Dm(F, S) for the backdoor. Further, the poisoned example
detector Ds can determine whether a test example x from the target class ŷ contains the
trigger based on the inner-image multivariate interactions of different features extracted
from the test example: poisoned = Ds(F, x), poisoned ∈ {0, 1}.

3.2. Multivariate Interactions of Benign and Backdoor Models

Consider the training process of a benign k-category image classification model Fθ with
parameters θ; the forward process makes predictions based on n features { f1, f2, · · · , fn}
extracted from the input image x. Then, the backward process calculates the gradients
of different sets of neurons representing different features and updates the parameters.
When focusing on a single feature fi of x, the forward–backward training process iteratively
adjust the weights {α1

i , α2
i , · · · , αk

i } of fi to k different classes. For classes containing fi, the
weights gradually increase during the training process, while for classes where fi rarely
appears, the weights tend to decrease. Finally, a well-trained image classification model
contains the appropriate feature information of k different classes. For each category, the
model holds a set of positive features that contribute most to that category and a set of
negative features that deny the prediction of the category. Figure 2 illustrates a simple
example of the parameter optimization process of deep-learning models. The model’s
parameter is initialized as 0.1 and updated by two input examples from different categories.
After the two-step update process, class 0 builds up positive and negative relationships
with feature 0 and feature 1, respectively. For two different categories, if they share many
positive features, they usually show a tendency to cooperate in the classification results,
while categories compete with each other when the positive features of one category tend
to be the negative features of the other.
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Figure 2. An example of the parameter-optimization process of deep-learning models. After the
two-step update process, two output classes build up positive and negative relationships with
different features.

However, when considering the training process of a backdoor image-classification
model Fφ, the cooperative and competitive relationships between features of different
classes may change due to the injection of backdoors. Specifically, for the training process
of the target class, Fφ is fed with three different types of features: (1) benign features of
benign examples, (2) trigger features of the trigger, and (3) disturbing features of poisoned
examples. During the parameter updating process, all of these features build up a positive
relationship with the prediction of the target class. As shown in Figure 3, for a certain class,
different features have different relationships with the class if the model is benign. If the
model is poisoned and the class is the target class of the backdoor attack, then different
features have similar relationships (positive) with the target class.
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benign poisoned

target class

features classes features classes

positive

relationship
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relationship

Figure 3. Comparison of the relationships between features and classes of benign models and
backdoor models. For benign models, features have both positive and negative relationships with
a prediction class, while for backdoor models, most features show a cooperative tendency in the
classification of the target class. Features in relation to other classes are marked with black arrows.

To quantify the relationships of features in benign models and backdoor models and
theoretically analyze the basic characteristics of backdoors of deep neural networks, we
introduce the Shapley value and multivariate-interaction evaluation strategy. According to
Equation (2), Zhang et al. [23] defined the increment of the Shapley value as a quantization
relation of two different features of an input example. In the study region of our interests,
we consider sets of features of different categories. Therefore, we reconstruct the set of
input features and consider the classification process as a two-player game. Specifically,
for a k-category image classification model, F, (x1, k1) and (x2, k2) are two input examples
from two categories k1 and k2, respectively. The feature extraction function f of model
F embeds an input example into n features. Therefore, the embedded features of x1 and
x2 can be represented as f (x1) = { f 1

1 , f 2
1 , · · · , f n

1 }, f (x2) = { f 1
2 , f 2

2 , · · · , f n
2 }. We consider

these features as two subsets of the feature set of k1 and k2; since our goal is to evaluate the
relationships between two categories, we reconstruct the input feature set with a union of

the subsets of f (x1) and f (x2). Let s1
1 = { f 1

1 , f 2
1 , · · · , f

n
2

1 }, s2
1 = { f

n
2 +1

1 , f
n
2 +2

1 , · · · , f n
1 }; then,

f (x1) can be represented as f (x1) = {s1
1, s2

1}. Similarly, f (x2) = {s1
2, s2

2}. Thus, we can
reconstruct two input feature sets S1 = {s1

1, s2
2} and S2 = {s2

1, s1
2} where each set contains

features from different categories. According to Equation (1), we define the reward v of
the game as the output logits for the target class k1; we can calculate the Shapley value
φv(s1

1|S1), φv(s2
2|S1), φv(s2

1|S2), and φv(s1
2|S2). Then, we define the relationship of features

from two categories:

B(Sk1 , Sk2) = ∑ φ(s|S′)− [φ(i|S) + φ(j|S)] (3)

when B(Sk1 , Sk2) > 0 features of k1 and k2 tend to cooperate with each other, while
B(Sk1 , Sk2) < 0 illustrates that features of k1 and k2 tend to compete with each other.
Given a k-category classification model and Equation (3), we can calculate a k× k matrix
M to represent the relationships of different categories’ features. The ij-th value in M
quantifies the relationship between the features of thei-th category and the features of the
j-th category. For example, Figure 4 gives a visualization of the relationship matrix of
a 10-category benign classification model trained on CIFAR-10. As shown in the image,
features of one category compete and cooperate with features from other categories and
play together to obtain the final prediction result.
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Figure 4. A heat-map visualization of the relationship matrix of a 10-category image classification
model. The value in the ij-th box quantifies the relationship between the features of the i-th category
and the features of the j-th category, where positive values represent cooperative relationships, while
negative values represent competitive relationships.

3.3. A Simple Approach for Backdoor Model Detection

The differences in multivariate interactions of benign and backdoor models enable
us to detect backdoor models using the multivariate-interaction matrix. Figure 5 gives an
example of the relationship matrix of backdoor models poisoned by the BadNet [6] attack
method. The model is trained on CIFAR-10 and the target class for the attack is set to be 1.
As shown in Figure 5, the relationships between features of category 1 with others show a
different trend from those in benign models (as shown in Figure 4). Therefore, we can use
the sum of each column of the relationship matrix as a feature to distinguish benign and
backdoor models. Given a boundary value b, the k× k multivariate-interaction matrix M
of a k-category test model F, the backdoor risk values {r1, r2, · · · , rk} can be calculated as
ri = ∑k

j=1 Mij, if ri > b; then, the test model is poisoned and the target attack class is class i.
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Figure 5. A heat-map visualization of the relationship matrix of a backdoor model poisoned by the
BadNet attack method. The target attack class is class 1. As shown in the figure, the features of class 1
show an abnormal cooperative relationship with features of other categories.
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However, extracting features from input examples requires access to intermediate
layers of the test model, which is often impracticable in real-world conditions. To achieve
backdoor detection under black-box constraints where only the prediction result (logits)
of the test model is available, we propose a simple approach for the backdoor model
detection method exploiting the idea of multivariate interactions. Specifically, for a k-
category classification model F, we require the defender to collect k small sets of n test
examples {{x1

1, x2
1, · · · , xn

1}, {x1
2, x2

2, · · · , xn
2}, · · · , {x1

k , x2
k , · · · , xn

k }} for each category (e.g.,
n = 3 means collecting 3 examples for each category); we do not have any assumptions
about these test examples (they could even contain a trigger). Then, the defender feeds
these test examples into the test model and calculates the sum of their prediction logits as
the risk vector:

r =


r1
r2
· · ·
rk

 = ∑
i

∑
j

F(xj
i) (4)

Given a risk boundary b, if thei-th component ri of the risk vector r is larger than b,
this model is considered to be a backdoor model and thei-th category is the target attack
class.

Our proposed backdoor model detection method is based on the idea of multivariate
interactions and is a macroscopic representation of the interaction of different categories of
features on the classification results. Compared with existing backdoor model detection
methods, our method is more effective and efficient, with the following two characteristics:

• Transferable. Most existing backdoor-detection methods have some assumptions
about potential attack methods (e.g., Neural Cleanse [12] requires the trigger to be
smaller than the natural features). Attackers can change the form of triggers guided by
these assumptions, which makes existing detection methods non-transferable to new
attacks. IBD does not require defenders to have prior knowledge about the potential
attacks. Therefore, it is transferable to detect different types of backdoor attacks,
including some state-of-the-art attack methods that can bypass most existing defense
methods [15]. Meanwhile, it is difficult for attackers to manipulate the multivariate
interactions of features in the target model; thus, our methods are still robust against
defense-known attacks;

• Cost-Friendly. Existing backdoor-detection methods often require defenders to collect
a set of reliable test examples or to perform thousands of forward–backward steps on
the target model, which leads to both high preparation costs and time costs. Compared
with existing methods, our method is cost-friendly, since it only requires several
forward processes of the classification model and does not require the test examples
to be trustful (without triggers).

4. Experimental Results
4.1. Defense Setting

Datasets. Following most previous backdoor-attack methods [6,15–17], we used
MNIST [26], CIFAR-10 [27], and GTSRB [28] to evaluate our method. MNIST is a handwrit-
ten digits dataset and contains 60,000 training examples and 10,000 examples written by
250 different people. CIFAR-10 is a labeled subset of the 80 million tiny images dataset,
which contains 10 categories with 60,000 images. Each example in CIFAR-10 is sized to
32× 32 and has three color channels. GTSRB is a German traffic sign recognition dataset
containing 43 categories with 39,209 training examples and 12,630 examples. Each example
in GTSRB is sized to 32× 32 and has three color channels.

Victim Models. Following BackdoorBox [20], we used two different image recognition
models as victim models when performing backdoor attacks on different datasets. For
MNIST, we used the baseline network for MNIST proposed in BadNet [6], which consists
of two convolutional layers and two fully connected layers. As for CIFAR-10 and GTSRB,
we used ResNet-18 as the victim model.
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Backdoor-attack methods. Among the above-mentioned backdoor-attack methods in
related works, we considered three methods as target methods for the following reasons.
Our first target method is BadNet [6], which was the first backdoor-attack method. BadNet
is widely used to evaluate the performances of different backdoor-detection methods; thus,
we consider it as the baseline backdoor-attack method. Then, we further introduce two of
the latest backdoor-attack methods: WaNet [15] and LIRA [16]. WaNet takes advantage
of image-warping technologies and designs warping-based invisible triggers. According
to the experiment result [15], WaNet can bypass most existing backdoor-defense methods,
including Neural Cleanse [12], Fine-Pruning [29], STRIP [13], and GradCam [30]. LIRA,
different from most other backdoor-attack methods, attempts to use neural networks to
generate sample-specific and invisible triggers. Similar to WaNet, the experimental results
of LIRA also prove that it is robust against most existing defense methods [16]. Therefore,
we use WaNet and LIRA as defense-robust attack methods to evaluate the effectiveness of
our method.

Baseline Defense Methods. We compared our method with Neural Cleanse [12],
which detects backdoor models by reversing potential triggers.

Metrics. For backdoor model detection, we mainly focused on the detection accuracy
of our method, which consists of the true positive rate (TPR) and the true negative rate
(TNR). Meanwhile, we compared the computational cost of different methods.

Detail Settings. According to the backdoor-model-detection process, we randomly
select 10 examples for each category and sum up their output logits. Since IBD does not
require these test examples to be trustworthy, the test dataset can be easily obtained.

4.2. Evaluate Interpretable Method

First, we evaluate our multivariate-interaction-based interpretable method on three
different datasets against three attack methods. Following the theoretical analysis of
multivariate interactions, we calculate the mean relationship values of benign and poisoned
models using Equation (3). According to Table 1, for benign classes, the mean relationship
values of benign and poisoned models are similar, while the mean relationship values of
the target classes are much larger. The experimental result demonstrates that features of
different categories show an abnormally cooperative relationship in the poisoned models,
which can be used to detect backdoor models.

Table 1. The evaluation result of our multivariate-interaction-based interpretable backdoor-detection
method. The mean relationship values are calculated for benign and poisoned models using Equa-
tion (3).

Dataset Attack
Mean Relationship Value

Target Class Benign Classes

MNIST

Benign - 32.7
BadNet 85.7 33.2
WaNet 114.8 32.9
LIRA 122.5 33.5

CIFAR-10

Benign - 48.6
BadNet 108.3 46.5
WaNet 182.4 50.2
LIRA 212.9 49.5
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Table 1. Cont.

Dataset Attack Mean Relationship Value

Target Class Benign Classes

GTSRB

Benign - 43.7
BadNet 93.8 45.8
WaNet 149.2 44.7
LIRA 196.5 46.0

4.3. Performance Comparison

We compared the performance of IBD and Neural Cleanse against three baseline
backdoor-attack methods on three different datasets shown in Table 2. Each attack method
achieved an attack success rate higher than 98%, which proves the efficiency of these
baseline attacks. When constraining the false positive rate to be 0%, i.e., all the benign
models are correctly classified, it was observed that IBD achieves a much higher true
positive rate than Neural Cleanse (a 78% increase in true positive rate on average), which
proves the effectiveness of IBD. Meanwhile, the detection accuracy of IBD on CIFAR10 and
GTSRB datasets against three attacks is 100%, which demonstrates the ability of IBD for
highly precise environments where the training cost of a model is expensive. Additionally,
the detection accuracy of Neural Cleanse against WaNet and LIRA attacks is significantly
lower than against BadNet, because the assumptions about triggers are not suitable when
handling WaNet and LIRA backdoor models. In contrast, IBD does not have a prior
assumption about the backdoor triggers, thus allowing better transferability and robustness
in dealing with unknown attacks.

Table 2. Performance comparison of IBD and Neural Cleanse against three different backdoor-attack
methods on three datasets. The clean detection accuracy and the attack detection accuracy represent
the mean detection accuracy of 100 benign models and 100 poisoned models, respectively. The
detection accuracy of IBD and Neural Cleanse is calculated on 200 models where the false positive
rate is set to be 0% ( i.e., all the clean models are classified correctly).

Dataset Clean Accuracy
BadNet WaNet LIRA

Attack Success Rate Neural Cleanse IBD Attack Success Rate Neural Cleanse IBD Attack Success Rate Neural Cleanse IBD

MNIST 0.99 0.99 0.33 0.98 0.99 0.24 1 0.99 0.21 1
CIFAR10 0.84 0.98 0.25 1 0.98 0.17 1 0.98 0.16 1
GTSRB 0.99 0.98 0.27 1 0.99 0.18 1 0.99 0.15 1

Then, we compared the overall performance of IBD and Neural Cleanse using his-
tograms with RUG shown in Figure 6. According to the figure, we have the following
observations. (1) Compared with Neural Cleanse, the detection values of benign and
poisoned models calculated by IBD can be significantly distinguished; thus, IBD achieves a
high true positive rate (TPR) while keeping a low False Positive Rate (FPR). (2) As referred
to in previous work [12,14], our experimental results also prove that Neural Cleanse can
effectively detect backdoor models attacked by BadNet. However, Neural Cleanse achieves
the best performance when dealing with the MNIST dataset and CIFAR10 dataset, and
behaves less effectively for a more complex dataset such as GTSRB. In contrast, IBD keeps
a high detection accuracy when dealing with models trained on a different dataset. (3) The
latest backdoor-attack methods such as WaNet and LIRA could bypass Neural Cleanse
with a high probability, since Neural Cleanse is based on assumptions about the potential
triggers and the assumptions are no longer appropriate for new attack methods. IBD does
not require additional information about the potential attack method and is based on the
multivariate interactions of target models, which cannot be manipulated by attackers, so
IBD remains effective against the latest backdoor-attack methods.
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Figure 6. Histogram with RUG of IBD and Neural Cleanse when dealing with models trained on
three different datasets. For each experiment, the test set contains 100 benign models and 3× 100
poisoned models attacked by BadNet, WaNet, and LIRA, respectively.

We also compared the time cost of IBD and Neural Cleanse detecting one model
trained on different datasets shown in Table 3. As analyzed in previous work [14], the time
complexity of Neural Cleanse is O(K2) since it requires performing targeted adversarial
attacks from each category to another. Therefore, with the increase in the complexity of the
training dataset, the time cost of Neural Cleanse becomes unacceptable. In contrast, the time
complexity of IBD is O(K) because it only requires some forward inference on the target
model, which makes IBD a cost-friendly and large-dataset-applicable backdoor-detection
method.
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Table 3. Time cost comparison of Neural Cleanse and IBD.

Dataset Model
Time Cost (s)

Neural Cleanse IBD

MNIST VGG-like 180 0.1

CIFAR10 ResNet18 240 0.15

GTSRB ResNet18 1800 0.48

5. Conclusions

In this paper, we propose IBD, an interpretable backdoor-detection method via multi-
variate interactions. Using information theory techniques, IBD reveals how the backdoor
works from the perspective of multivariate interactions of features. Due to the training
process of backdoor models, the features of other categories contribute abnormally to the
prediction of the target label. Based on the interpretable theorem, IBD enables defenders
to detect backdoor models and poisoned examples without introducing additional infor-
mation about the specific attack method. Meanwhile, we propose a simple way to detect
backdoor models on the basis of our theoretical analysis. By summarizing the output logits
of several input examples, IBD significantly reduces the time cost for backdoor detection
and enables defenders to perform detection under black-box conditions. Experiments
on widely used datasets and models show that IBD achieves a 78% increase on average
in detection accuracy and an order-of-magnitude reduction in time cost compared with
existing backdoor-detection methods. The most relevant future work is to explore the
performance of IBD against detection-known attacks.
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